| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpr | Structured version Visualization version Unicode version | ||
| Description: The infimum of a pair. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| infpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. 2
| |
| 2 | ifcl 4130 |
. . 3
| |
| 3 | 2 | 3adant1 1079 |
. 2
|
| 4 | ifpr 4233 |
. . 3
| |
| 5 | 4 | 3adant1 1079 |
. 2
|
| 6 | breq2 4657 |
. . . . . 6
| |
| 7 | 6 | notbid 308 |
. . . . 5
|
| 8 | breq2 4657 |
. . . . . 6
| |
| 9 | 8 | notbid 308 |
. . . . 5
|
| 10 | sonr 5056 |
. . . . . . 7
| |
| 11 | 10 | 3adant3 1081 |
. . . . . 6
|
| 12 | 11 | adantr 481 |
. . . . 5
|
| 13 | simpr 477 |
. . . . 5
| |
| 14 | 7, 9, 12, 13 | ifbothda 4123 |
. . . 4
|
| 15 | breq2 4657 |
. . . . . 6
| |
| 16 | 15 | notbid 308 |
. . . . 5
|
| 17 | breq2 4657 |
. . . . . 6
| |
| 18 | 17 | notbid 308 |
. . . . 5
|
| 19 | so2nr 5059 |
. . . . . . . 8
| |
| 20 | 19 | 3impb 1260 |
. . . . . . 7
|
| 21 | imnan 438 |
. . . . . . 7
| |
| 22 | 20, 21 | sylibr 224 |
. . . . . 6
|
| 23 | 22 | imp 445 |
. . . . 5
|
| 24 | sonr 5056 |
. . . . . . 7
| |
| 25 | 24 | 3adant2 1080 |
. . . . . 6
|
| 26 | 25 | adantr 481 |
. . . . 5
|
| 27 | 16, 18, 23, 26 | ifbothda 4123 |
. . . 4
|
| 28 | breq1 4656 |
. . . . . . 7
| |
| 29 | 28 | notbid 308 |
. . . . . 6
|
| 30 | breq1 4656 |
. . . . . . 7
| |
| 31 | 30 | notbid 308 |
. . . . . 6
|
| 32 | 29, 31 | ralprg 4234 |
. . . . 5
|
| 33 | 32 | 3adant1 1079 |
. . . 4
|
| 34 | 14, 27, 33 | mpbir2and 957 |
. . 3
|
| 35 | 34 | r19.21bi 2932 |
. 2
|
| 36 | 1, 3, 5, 35 | infmin 8400 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-cnv 5122 df-iota 5851 df-riota 6611 df-sup 8348 df-inf 8349 |
| This theorem is referenced by: infsn 8410 liminf10ex 40006 |
| Copyright terms: Public domain | W3C validator |