Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  actfunsnrndisj Structured version   Visualization version   Unicode version

Theorem actfunsnrndisj 30683
Description: The action  F of extending function from  B to  C with new values at point  I yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Hypotheses
Ref Expression
actfunsn.1  |-  ( (
ph  /\  k  e.  C )  ->  A  C_  ( C  ^m  B
) )
actfunsn.2  |-  ( ph  ->  C  e.  _V )
actfunsn.3  |-  ( ph  ->  I  e.  V )
actfunsn.4  |-  ( ph  ->  -.  I  e.  B
)
actfunsn.5  |-  F  =  ( x  e.  A  |->  ( x  u.  { <. I ,  k >. } ) )
Assertion
Ref Expression
actfunsnrndisj  |-  ( ph  -> Disj  k  e.  C  ran  F )
Distinct variable groups:    x, A    k, I, x    ph, k
Allowed substitution hints:    ph( x)    A( k)    B( x, k)    C( x, k)    F( x, k)    V( x, k)

Proof of Theorem actfunsnrndisj
Dummy variables  z 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  /\  f  =  ( z  u. 
{ <. I ,  k
>. } ) )  -> 
f  =  ( z  u.  { <. I ,  k >. } ) )
21fveq1d 6193 . . . . . 6  |-  ( ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  /\  f  =  ( z  u. 
{ <. I ,  k
>. } ) )  -> 
( f `  I
)  =  ( ( z  u.  { <. I ,  k >. } ) `
 I ) )
3 actfunsn.1 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  C )  ->  A  C_  ( C  ^m  B
) )
43ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  A  C_  ( C  ^m  B
) )
5 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  z  e.  A )
64, 5sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  z  e.  ( C  ^m  B
) )
7 elmapfn 7880 . . . . . . . . . 10  |-  ( z  e.  ( C  ^m  B )  ->  z  Fn  B )
86, 7syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  z  Fn  B )
9 actfunsn.3 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  V )
109ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  I  e.  V )
11 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  k  e.  C )
12 fnsng 5938 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  k  e.  C )  ->  { <. I ,  k
>. }  Fn  { I } )
1310, 11, 12syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  { <. I ,  k >. }  Fn  { I } )
14 actfunsn.4 . . . . . . . . . . 11  |-  ( ph  ->  -.  I  e.  B
)
15 disjsn 4246 . . . . . . . . . . 11  |-  ( ( B  i^i  { I } )  =  (/)  <->  -.  I  e.  B )
1614, 15sylibr 224 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  {
I } )  =  (/) )
1716ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  ( B  i^i  { I }
)  =  (/) )
18 snidg 4206 . . . . . . . . . 10  |-  ( I  e.  V  ->  I  e.  { I } )
1910, 18syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  I  e.  { I } )
20 fvun2 6270 . . . . . . . . 9  |-  ( ( z  Fn  B  /\  {
<. I ,  k >. }  Fn  { I }  /\  ( ( B  i^i  { I }
)  =  (/)  /\  I  e.  { I } ) )  ->  ( (
z  u.  { <. I ,  k >. } ) `
 I )  =  ( { <. I ,  k >. } `  I
) )
218, 13, 17, 19, 20syl112anc 1330 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  (
( z  u.  { <. I ,  k >. } ) `  I
)  =  ( {
<. I ,  k >. } `  I )
)
22 fvsng 6447 . . . . . . . . 9  |-  ( ( I  e.  V  /\  k  e.  C )  ->  ( { <. I ,  k >. } `  I
)  =  k )
2310, 11, 22syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  ( { <. I ,  k
>. } `  I )  =  k )
2421, 23eqtrd 2656 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  ->  (
( z  u.  { <. I ,  k >. } ) `  I
)  =  k )
2524adantr 481 . . . . . 6  |-  ( ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  /\  f  =  ( z  u. 
{ <. I ,  k
>. } ) )  -> 
( ( z  u. 
{ <. I ,  k
>. } ) `  I
)  =  k )
262, 25eqtrd 2656 . . . . 5  |-  ( ( ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  /\  z  e.  A )  /\  f  =  ( z  u. 
{ <. I ,  k
>. } ) )  -> 
( f `  I
)  =  k )
27 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  -> 
f  e.  ran  F
)
28 actfunsn.5 . . . . . . . 8  |-  F  =  ( x  e.  A  |->  ( x  u.  { <. I ,  k >. } ) )
29 uneq1 3760 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  u.  { <. I ,  k >. } )  =  ( z  u. 
{ <. I ,  k
>. } ) )
3029cbvmptv 4750 . . . . . . . 8  |-  ( x  e.  A  |->  ( x  u.  { <. I ,  k >. } ) )  =  ( z  e.  A  |->  ( z  u. 
{ <. I ,  k
>. } ) )
3128, 30eqtri 2644 . . . . . . 7  |-  F  =  ( z  e.  A  |->  ( z  u.  { <. I ,  k >. } ) )
32 vex 3203 . . . . . . . 8  |-  z  e. 
_V
33 snex 4908 . . . . . . . 8  |-  { <. I ,  k >. }  e.  _V
3432, 33unex 6956 . . . . . . 7  |-  ( z  u.  { <. I ,  k >. } )  e. 
_V
3531, 34elrnmpti 5376 . . . . . 6  |-  ( f  e.  ran  F  <->  E. z  e.  A  f  =  ( z  u.  { <. I ,  k >. } ) )
3627, 35sylib 208 . . . . 5  |-  ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  ->  E. z  e.  A  f  =  ( z  u.  { <. I ,  k
>. } ) )
3726, 36r19.29a 3078 . . . 4  |-  ( ( ( ph  /\  k  e.  C )  /\  f  e.  ran  F )  -> 
( f `  I
)  =  k )
3837ralrimiva 2966 . . 3  |-  ( (
ph  /\  k  e.  C )  ->  A. f  e.  ran  F ( f `
 I )  =  k )
3938ralrimiva 2966 . 2  |-  ( ph  ->  A. k  e.  C  A. f  e.  ran  F ( f `  I
)  =  k )
40 invdisj 4638 . 2  |-  ( A. k  e.  C  A. f  e.  ran  F ( f `  I )  =  k  -> Disj  k  e.  C  ran  F )
4139, 40syl 17 1  |-  ( ph  -> Disj  k  e.  C  ran  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183  Disj wdisj 4620    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  breprexplema  30708
  Copyright terms: Public domain W3C validator