MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blbas Structured version   Visualization version   Unicode version

Theorem blbas 22235
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )

Proof of Theorem blbas
Dummy variables  x  r  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 22234 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. r  e.  RR+  ( z ( ball `  D ) r ) 
C_  ( x  i^i  y ) )
2 simpll 790 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  D  e.  ( *Met `  X
) )
3 inss1 3833 . . . . . . . . . . 11  |-  ( x  i^i  y )  C_  x
43sseli 3599 . . . . . . . . . 10  |-  ( z  e.  ( x  i^i  y )  ->  z  e.  x )
5 elunii 4441 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
64, 5sylan 488 . . . . . . . . 9  |-  ( ( z  e.  ( x  i^i  y )  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
76ad2ant2lr 784 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  U. ran  ( ball `  D
) )
8 unirnbl 22225 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
98ad2antrr 762 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  U. ran  ( ball `  D )  =  X )
107, 9eleqtrd 2703 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  X
)
11 blssex 22232 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X
)  ->  ( E. b  e.  ran  ( ball `  D ) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
122, 10, 11syl2anc 693 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  ( E. b  e.  ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
131, 12mpbird 247 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) )
1413ex 450 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) ) )
1514ralrimdva 2969 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D )
)  ->  A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1615ralrimivv 2970 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) )
17 fvex 6201 . . . 4  |-  ( ball `  D )  e.  _V
1817rnex 7100 . . 3  |-  ran  ( ball `  D )  e. 
_V
19 isbasis2g 20752 . . 3  |-  ( ran  ( ball `  D
)  e.  _V  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
2018, 19ax-mp 5 . 2  |-  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) )
2116, 20sylibr 224 1  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   ran crn 5115   ` cfv 5888  (class class class)co 6650   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-bl 19741  df-bases 20750
This theorem is referenced by:  mopntopon  22244  elmopn  22247  imasf1oxms  22294  blssopn  22300  metss  22313
  Copyright terms: Public domain W3C validator