MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcfilu Structured version   Visualization version   Unicode version

Theorem trcfilu 22098
Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
trcfilu  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( Ft  A )  e.  (CauFilu `  ( Ut  ( A  X.  A ) ) ) )

Proof of Theorem trcfilu
Dummy variables  a 
b  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  U  e.  (UnifOn `  X
) )
2 simp2l 1087 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  F  e.  (CauFilu `  U
) )
3 iscfilu 22092 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  (CauFilu `  U )  <->  ( F  e.  ( fBas `  X
)  /\  A. v  e.  U  E. a  e.  F  ( a  X.  a )  C_  v
) ) )
43biimpa 501 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  F  e.  (CauFilu `  U ) )  ->  ( F  e.  ( fBas `  X
)  /\  A. v  e.  U  E. a  e.  F  ( a  X.  a )  C_  v
) )
51, 2, 4syl2anc 693 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( F  e.  (
fBas `  X )  /\  A. v  e.  U  E. a  e.  F  ( a  X.  a
)  C_  v )
)
65simpld 475 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  F  e.  ( fBas `  X ) )
7 simp3 1063 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  A  C_  X )
8 simp2r 1088 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  -.  (/)  e.  ( Ft  A ) )
9 trfbas2 21647 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  A  C_  X )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  -.  (/)  e.  ( Ft  A ) ) )
109biimpar 502 . . 3  |-  ( ( ( F  e.  (
fBas `  X )  /\  A  C_  X )  /\  -.  (/)  e.  ( Ft  A ) )  -> 
( Ft  A )  e.  (
fBas `  A )
)
116, 7, 8, 10syl21anc 1325 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( Ft  A )  e.  (
fBas `  A )
)
122ad5antr 770 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  F  e.  (CauFilu `  U
) )
131adantr 481 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
1413elfvexd 6222 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  X  e.  _V )
157adantr 481 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  A  C_  X
)
1614, 15ssexd 4805 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  A  e.  _V )
1716ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  A  e.  _V )
18 simplr 792 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  a  e.  F )
19 elrestr 16089 . . . . . . 7  |-  ( ( F  e.  (CauFilu `  U
)  /\  A  e.  _V  /\  a  e.  F
)  ->  ( a  i^i  A )  e.  ( Ft  A ) )
2012, 17, 18, 19syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  ( a  i^i  A
)  e.  ( Ft  A ) )
21 inxp 5254 . . . . . . 7  |-  ( ( a  X.  a )  i^i  ( A  X.  A ) )  =  ( ( a  i^i 
A )  X.  (
a  i^i  A )
)
22 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  ( a  X.  a
)  C_  v )
23 ssrin 3838 . . . . . . . . 9  |-  ( ( a  X.  a ) 
C_  v  ->  (
( a  X.  a
)  i^i  ( A  X.  A ) )  C_  ( v  i^i  ( A  X.  A ) ) )
2422, 23syl 17 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  ( ( a  X.  a )  i^i  ( A  X.  A ) ) 
C_  ( v  i^i  ( A  X.  A
) ) )
25 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  w  =  ( v  i^i  ( A  X.  A ) ) )
2624, 25sseqtr4d 3642 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  ( ( a  X.  a )  i^i  ( A  X.  A ) ) 
C_  w )
2721, 26syl5eqssr 3650 . . . . . 6  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  ( ( a  i^i 
A )  X.  (
a  i^i  A )
)  C_  w )
28 id 22 . . . . . . . . 9  |-  ( b  =  ( a  i^i 
A )  ->  b  =  ( a  i^i 
A ) )
2928sqxpeqd 5141 . . . . . . . 8  |-  ( b  =  ( a  i^i 
A )  ->  (
b  X.  b )  =  ( ( a  i^i  A )  X.  ( a  i^i  A
) ) )
3029sseq1d 3632 . . . . . . 7  |-  ( b  =  ( a  i^i 
A )  ->  (
( b  X.  b
)  C_  w  <->  ( (
a  i^i  A )  X.  ( a  i^i  A
) )  C_  w
) )
3130rspcev 3309 . . . . . 6  |-  ( ( ( a  i^i  A
)  e.  ( Ft  A )  /\  ( ( a  i^i  A )  X.  ( a  i^i 
A ) )  C_  w )  ->  E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w )
3220, 27, 31syl2anc 693 . . . . 5  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U )  /\  w  =  ( v  i^i  ( A  X.  A
) ) )  /\  a  e.  F )  /\  ( a  X.  a
)  C_  v )  ->  E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w )
335simprd 479 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  A. v  e.  U  E. a  e.  F  ( a  X.  a
)  C_  v )
3433r19.21bi 2932 . . . . . . 7  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  v  e.  U )  ->  E. a  e.  F  ( a  X.  a
)  C_  v )
35343ad2antr2 1227 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  ( w  e.  ( Ut  ( A  X.  A
) )  /\  v  e.  U  /\  w  =  ( v  i^i  ( A  X.  A
) ) ) )  ->  E. a  e.  F  ( a  X.  a
)  C_  v )
36353anassrs 1290 . . . . 5  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  ( F  e.  (CauFilu `  U )  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U
)  /\  w  =  ( v  i^i  ( A  X.  A ) ) )  ->  E. a  e.  F  ( a  X.  a )  C_  v
)
3732, 36r19.29a 3078 . . . 4  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  ( F  e.  (CauFilu `  U )  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  /\  v  e.  U
)  /\  w  =  ( v  i^i  ( A  X.  A ) ) )  ->  E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w )
38 xpexg 6960 . . . . . 6  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
3916, 16, 38syl2anc 693 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
40 simpr 477 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
41 elrest 16088 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
w  e.  ( Ut  ( A  X.  A ) )  <->  E. v  e.  U  w  =  ( v  i^i  ( A  X.  A
) ) ) )
4241biimpa 501 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. v  e.  U  w  =  ( v  i^i  ( A  X.  A
) ) )
4313, 39, 40, 42syl21anc 1325 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. v  e.  U  w  =  ( v  i^i  ( A  X.  A ) ) )
4437, 43r19.29a 3078 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w )
4544ralrimiva 2966 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  ->  A. w  e.  ( Ut  ( A  X.  A
) ) E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w )
46 trust 22033 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )
471, 7, 46syl2anc 693 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( Ut  ( A  X.  A ) )  e.  (UnifOn `  A )
)
48 iscfilu 22092 . . 3  |-  ( ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A )  ->  (
( Ft  A )  e.  (CauFilu `  ( Ut  ( A  X.  A ) ) )  <-> 
( ( Ft  A )  e.  ( fBas `  A
)  /\  A. w  e.  ( Ut  ( A  X.  A ) ) E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w
) ) )
4947, 48syl 17 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( ( Ft  A )  e.  (CauFilu `  ( Ut  ( A  X.  A ) ) )  <->  ( ( Ft  A )  e.  ( fBas `  A )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) E. b  e.  ( Ft  A ) ( b  X.  b )  C_  w ) ) )
5011, 45, 49mpbir2and 957 1  |-  ( ( U  e.  (UnifOn `  X )  /\  ( F  e.  (CauFilu `  U
)  /\  -.  (/)  e.  ( Ft  A ) )  /\  A  C_  X )  -> 
( Ft  A )  e.  (CauFilu `  ( Ut  ( A  X.  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    X. cxp 5112   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   fBascfbas 19734  UnifOncust 22003  CauFiluccfilu 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743  df-ust 22004  df-cfilu 22091
This theorem is referenced by:  ucnextcn  22108
  Copyright terms: Public domain W3C validator