MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   Unicode version

Theorem cmetcusp1 23149
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x  |-  X  =  ( Base `  F
)
cmetcusp1.d  |-  D  =  ( ( dist `  F
)  |`  ( X  X.  X ) )
cmetcusp1.u  |-  U  =  (UnifSt `  F )
Assertion
Ref Expression
cmetcusp1  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  ->  F  e. CUnifSp )

Proof of Theorem cmetcusp1
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 cmsms 23145 . . . 4  |-  ( F  e. CMetSp  ->  F  e.  MetSp )
2 msxms 22259 . . . 4  |-  ( F  e.  MetSp  ->  F  e.  *MetSp )
31, 2syl 17 . . 3  |-  ( F  e. CMetSp  ->  F  e.  *MetSp )
4 cmetcusp1.x . . . 4  |-  X  =  ( Base `  F
)
5 cmetcusp1.d . . . 4  |-  D  =  ( ( dist `  F
)  |`  ( X  X.  X ) )
6 cmetcusp1.u . . . 4  |-  U  =  (UnifSt `  F )
74, 5, 6xmsusp 22374 . . 3  |-  ( ( X  =/=  (/)  /\  F  e.  *MetSp  /\  U  =  (metUnif `  D )
)  ->  F  e. UnifSp )
83, 7syl3an2 1360 . 2  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  ->  F  e. UnifSp )
9 simpl3 1066 . . . . . . 7  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  ->  U  =  (metUnif `  D
) )
109fveq2d 6195 . . . . . 6  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
(CauFilu
`  U )  =  (CauFilu `  (metUnif `  D
) ) )
1110eleq2d 2687 . . . . 5  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
( c  e.  (CauFilu `  U )  <->  c  e.  (CauFilu `  (metUnif `  D )
) ) )
12 simpl1 1064 . . . . . 6  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  ->  X  =/=  (/) )
134, 5cmscmet 23143 . . . . . . . . 9  |-  ( F  e. CMetSp  ->  D  e.  (
CMet `  X )
)
14 cmetmet 23084 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
15 metxmet 22139 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
1613, 14, 153syl 18 . . . . . . . 8  |-  ( F  e. CMetSp  ->  D  e.  ( *Met `  X
) )
17163ad2ant2 1083 . . . . . . 7  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  ->  D  e.  ( *Met `  X ) )
1817adantr 481 . . . . . 6  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  ->  D  e.  ( *Met `  X ) )
19 simpr 477 . . . . . 6  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
c  e.  ( Fil `  X ) )
20 cfilucfil4 23118 . . . . . 6  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X )  /\  c  e.  ( Fil `  X
) )  ->  (
c  e.  (CauFilu `  (metUnif `  D ) )  <->  c  e.  (CauFil `  D ) ) )
2112, 18, 19, 20syl3anc 1326 . . . . 5  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
( c  e.  (CauFilu `  (metUnif `  D )
)  <->  c  e.  (CauFil `  D ) ) )
2211, 21bitrd 268 . . . 4  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
( c  e.  (CauFilu `  U )  <->  c  e.  (CauFil `  D ) ) )
23 eqid 2622 . . . . . . . . . . . 12  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
2423iscmet 23082 . . . . . . . . . . 11  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. c  e.  (CauFil `  D )
( ( MetOpen `  D
)  fLim  c )  =/=  (/) ) )
2524simprbi 480 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  A. c  e.  (CauFil `  D )
( ( MetOpen `  D
)  fLim  c )  =/=  (/) )
2613, 25syl 17 . . . . . . . . 9  |-  ( F  e. CMetSp  ->  A. c  e.  (CauFil `  D ) ( (
MetOpen `  D )  fLim  c )  =/=  (/) )
27 eqid 2622 . . . . . . . . . . . . . 14  |-  ( TopOpen `  F )  =  (
TopOpen `  F )
2827, 4, 5xmstopn 22256 . . . . . . . . . . . . 13  |-  ( F  e.  *MetSp  ->  ( TopOpen
`  F )  =  ( MetOpen `  D )
)
293, 28syl 17 . . . . . . . . . . . 12  |-  ( F  e. CMetSp  ->  ( TopOpen `  F
)  =  ( MetOpen `  D ) )
3029oveq1d 6665 . . . . . . . . . . 11  |-  ( F  e. CMetSp  ->  ( ( TopOpen `  F )  fLim  c
)  =  ( (
MetOpen `  D )  fLim  c ) )
3130neeq1d 2853 . . . . . . . . . 10  |-  ( F  e. CMetSp  ->  ( ( (
TopOpen `  F )  fLim  c )  =/=  (/)  <->  ( ( MetOpen
`  D )  fLim  c )  =/=  (/) ) )
3231ralbidv 2986 . . . . . . . . 9  |-  ( F  e. CMetSp  ->  ( A. c  e.  (CauFil `  D )
( ( TopOpen `  F
)  fLim  c )  =/=  (/)  <->  A. c  e.  (CauFil `  D ) ( (
MetOpen `  D )  fLim  c )  =/=  (/) ) )
3326, 32mpbird 247 . . . . . . . 8  |-  ( F  e. CMetSp  ->  A. c  e.  (CauFil `  D ) ( (
TopOpen `  F )  fLim  c )  =/=  (/) )
3433r19.21bi 2932 . . . . . . 7  |-  ( ( F  e. CMetSp  /\  c  e.  (CauFil `  D )
)  ->  ( ( TopOpen
`  F )  fLim  c )  =/=  (/) )
3534ex 450 . . . . . 6  |-  ( F  e. CMetSp  ->  ( c  e.  (CauFil `  D )  ->  ( ( TopOpen `  F
)  fLim  c )  =/=  (/) ) )
36353ad2ant2 1083 . . . . 5  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  -> 
( c  e.  (CauFil `  D )  ->  (
( TopOpen `  F )  fLim  c )  =/=  (/) ) )
3736adantr 481 . . . 4  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
( c  e.  (CauFil `  D )  ->  (
( TopOpen `  F )  fLim  c )  =/=  (/) ) )
3822, 37sylbid 230 . . 3  |-  ( ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  /\  c  e.  ( Fil `  X ) )  -> 
( c  e.  (CauFilu `  U )  ->  (
( TopOpen `  F )  fLim  c )  =/=  (/) ) )
3938ralrimiva 2966 . 2  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  ->  A. c  e.  ( Fil `  X ) ( c  e.  (CauFilu `  U
)  ->  ( ( TopOpen
`  F )  fLim  c )  =/=  (/) ) )
404, 6, 27iscusp2 22106 . 2  |-  ( F  e. CUnifSp 
<->  ( F  e. UnifSp  /\  A. c  e.  ( Fil `  X ) ( c  e.  (CauFilu `  U )  -> 
( ( TopOpen `  F
)  fLim  c )  =/=  (/) ) ) )
418, 39, 40sylanbrc 698 1  |-  ( ( X  =/=  (/)  /\  F  e. CMetSp  /\  U  =  (metUnif `  D ) )  ->  F  e. CUnifSp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950   TopOpenctopn 16082   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736  metUnifcmetu 19737   Filcfil 21649    fLim cflim 21738  UnifStcuss 22057  UnifSpcusp 22058  CauFiluccfilu 22090  CUnifSpccusp 22101   *MetSpcxme 22122   MetSpcmt 22123  CauFilccfil 23050   CMetcms 23052  CMetSpccms 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-metu 19745  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-fil 21650  df-ust 22004  df-utop 22035  df-usp 22061  df-cfilu 22091  df-cusp 22102  df-xms 22125  df-ms 22126  df-cfil 23053  df-cmet 23055  df-cms 23132
This theorem is referenced by:  cnfldcusp  23153  recusp  23170
  Copyright terms: Public domain W3C validator