MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Visualization version   Unicode version

Theorem iscmet3 23091
Description: The property " D is a complete metric" expressed in terms of functions on  NN (or any other upper integer set). Thus, we only have to look at functions on 
NN, and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1  |-  Z  =  ( ZZ>= `  M )
iscmet3.2  |-  J  =  ( MetOpen `  D )
iscmet3.3  |-  ( ph  ->  M  e.  ZZ )
iscmet3.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
Assertion
Ref Expression
iscmet3  |-  ( ph  ->  ( D  e.  (
CMet `  X )  <->  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) ) )
Distinct variable groups:    D, f    f, X    f, J    f, Z    f, M    ph, f

Proof of Theorem iscmet3
Dummy variables  g 
i  j  k  n  s  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5  |-  J  =  ( MetOpen `  D )
21cmetcau 23087 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  f  e.  ( Cau `  D
) )  ->  f  e.  dom  ( ~~> t `  J ) )
32a1d 25 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  f  e.  ( Cau `  D
) )  ->  (
f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )
43ralrimiva 2966 . 2  |-  ( D  e.  ( CMet `  X
)  ->  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )
5 iscmet3.4 . . . . 5  |-  ( ph  ->  D  e.  ( Met `  X ) )
65adantr 481 . . . 4  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  ( Met `  X ) )
7 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  g  e.  (CauFil `  D ) )
8 1rp 11836 . . . . . . . . . . 11  |-  1  e.  RR+
9 rphalfcl 11858 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
108, 9ax-mp 5 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  RR+
11 rpexpcl 12879 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
1210, 11mpan 706 . . . . . . . . 9  |-  ( k  e.  ZZ  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
13 cfili 23066 . . . . . . . . 9  |-  ( ( g  e.  (CauFil `  D )  /\  (
( 1  /  2
) ^ k )  e.  RR+ )  ->  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
147, 12, 13syl2an 494 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  /\  k  e.  ZZ )  ->  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
1514ralrimiva 2966 . . . . . . 7  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  A. k  e.  ZZ  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  <  (
( 1  /  2
) ^ k ) )
16 vex 3203 . . . . . . . 8  |-  g  e. 
_V
17 znnen 14941 . . . . . . . . 9  |-  ZZ  ~~  NN
18 nnenom 12779 . . . . . . . . 9  |-  NN  ~~  om
1917, 18entri 8010 . . . . . . . 8  |-  ZZ  ~~  om
20 raleq 3138 . . . . . . . . 9  |-  ( t  =  ( s `  k )  ->  ( A. v  e.  t 
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2120raleqbi1dv 3146 . . . . . . . 8  |-  ( t  =  ( s `  k )  ->  ( A. u  e.  t  A. v  e.  t 
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2216, 19, 21axcc4 9261 . . . . . . 7  |-  ( A. k  e.  ZZ  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
)  ->  E. s
( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2315, 22syl 17 . . . . . 6  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  E. s
( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
24 iscmet3.3 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
2524ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  M  e.  ZZ )
26 iscmet3.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
2726uzenom 12763 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  Z  ~~  om )
28 endom 7982 . . . . . . . . . . 11  |-  ( Z 
~~  om  ->  Z  ~<_  om )
2925, 27, 283syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  Z  ~<_  om )
30 dfin5 3582 . . . . . . . . . . . . . . 15  |-  ( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `  n
) )  =  {
x  e.  (  _I 
`  X )  |  x  e.  |^|_ n  e.  ( M ... k
) ( s `  n ) }
31 fzn0 12355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M ... k )  =/=  (/)  <->  k  e.  (
ZZ>= `  M ) )
3231biimpri 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... k )  =/=  (/) )
3332, 26eleq2s 2719 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  Z  ->  ( M ... k )  =/=  (/) )
34 simprr 796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  s : ZZ --> g )
35 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( M ... k )  ->  n  e.  ZZ )
36 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s : ZZ --> g  /\  n  e.  ZZ )  ->  ( s `  n
)  e.  g )
3734, 35, 36syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  n  e.  ( M ... k ) )  ->  ( s `  n )  e.  g )
38 metxmet 22139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
395, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  D  e.  ( *Met `  X ) )
4039adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  ( *Met `  X
) )
41 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g  e.  (CauFil `  D )  /\  s : ZZ --> g )  -> 
g  e.  (CauFil `  D ) )
42 cfilfil 23065 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( *Met `  X )  /\  g  e.  (CauFil `  D ) )  -> 
g  e.  ( Fil `  X ) )
4340, 41, 42syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  g  e.  ( Fil `  X ) )
44 filelss 21656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( g  e.  ( Fil `  X )  /\  (
s `  n )  e.  g )  ->  (
s `  n )  C_  X )
4543, 44sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  ( s `  n )  e.  g )  ->  ( s `  n )  C_  X
)
4637, 45syldan 487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  n  e.  ( M ... k ) )  ->  ( s `  n )  C_  X
)
4746ralrimiva 2966 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. n  e.  ( M ... k ) ( s `  n
)  C_  X )
48 r19.2z 4060 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M ... k
)  =/=  (/)  /\  A. n  e.  ( M ... k ) ( s `
 n )  C_  X )  ->  E. n  e.  ( M ... k
) ( s `  n )  C_  X
)
4933, 47, 48syl2anr 495 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  E. n  e.  ( M ... k
) ( s `  n )  C_  X
)
50 iinss 4571 . . . . . . . . . . . . . . . . . 18  |-  ( E. n  e.  ( M ... k ) ( s `  n ) 
C_  X  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  X
)
5149, 50syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  X
)
526ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  D  e.  ( Met `  X ) )
53 elfvdm 6220 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  ( Met `  X
)  ->  X  e.  dom  Met )
54 fvi 6255 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  dom  Met  ->  (  _I  `  X )  =  X )
5552, 53, 543syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  (  _I  `  X )  =  X )
5651, 55sseqtr4d 3642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  (  _I  `  X ) )
57 sseqin2 3817 . . . . . . . . . . . . . . . 16  |-  ( |^|_ n  e.  ( M ... k ) ( s `
 n )  C_  (  _I  `  X )  <-> 
( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `
 n ) )  =  |^|_ n  e.  ( M ... k ) ( s `  n
) )
5856, 57sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `  n ) )  =  |^|_ n  e.  ( M ... k
) ( s `  n ) )
5930, 58syl5eqr 2670 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  { x  e.  (  _I  `  X
)  |  x  e. 
|^|_ n  e.  ( M ... k ) ( s `  n ) }  =  |^|_ n  e.  ( M ... k
) ( s `  n ) )
6043adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  g  e.  ( Fil `  X ) )
6137ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. n  e.  ( M ... k ) ( s `  n
)  e.  g )
6261adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  A. n  e.  ( M ... k
) ( s `  n )  e.  g )
6333adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( M ... k )  =/=  (/) )
64 fzfid 12772 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( M ... k )  e.  Fin )
65 iinfi 8323 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( Fil `  X )  /\  ( A. n  e.  ( M ... k ) ( s `  n )  e.  g  /\  ( M ... k )  =/=  (/)  /\  ( M ... k )  e.  Fin ) )  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  ( fi `  g ) )
6660, 62, 63, 64, 65syl13anc 1328 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  ( fi `  g ) )
67 filfi 21663 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  X
)  ->  ( fi `  g )  =  g )
6860, 67syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( fi `  g )  =  g )
6966, 68eleqtrd 2703 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  g )
70 fileln0 21654 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  ( Fil `  X )  /\  |^|_ n  e.  ( M ... k ) ( s `
 n )  e.  g )  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  =/=  (/) )
7160, 69, 70syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  =/=  (/) )
7259, 71eqnetrd 2861 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  { x  e.  (  _I  `  X
)  |  x  e. 
|^|_ n  e.  ( M ... k ) ( s `  n ) }  =/=  (/) )
73 rabn0 3958 . . . . . . . . . . . . 13  |-  ( { x  e.  (  _I 
`  X )  |  x  e.  |^|_ n  e.  ( M ... k
) ( s `  n ) }  =/=  (/)  <->  E. x  e.  (  _I 
`  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
7472, 73sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  E. x  e.  (  _I  `  X
) x  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) )
7574ralrimiva 2966 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. k  e.  Z  E. x  e.  (  _I  `  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
7675adantrrr 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  A. k  e.  Z  E. x  e.  (  _I  `  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
77 fvex 6201 . . . . . . . . . . 11  |-  (  _I 
`  X )  e. 
_V
78 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  ( f `  k )  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) ) )
79 fvex 6201 . . . . . . . . . . . . 13  |-  ( f `
 k )  e. 
_V
80 eliin 4525 . . . . . . . . . . . . 13  |-  ( ( f `  k )  e.  _V  ->  (
( f `  k
)  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )
8179, 80ax-mp 5 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  |^|_ n  e.  ( M ... k ) ( s `  n
)  <->  A. n  e.  ( M ... k ) ( f `  k
)  e.  ( s `
 n ) )
8278, 81syl6bb 276 . . . . . . . . . . 11  |-  ( x  =  ( f `  k )  ->  (
x  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )
8377, 82axcc4dom 9263 . . . . . . . . . 10  |-  ( ( Z  ~<_  om  /\  A. k  e.  Z  E. x  e.  (  _I  `  X
) x  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) )  ->  E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )
8429, 76, 83syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )
85 df-ral 2917 . . . . . . . . . . . . 13  |-  ( A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
)  <->  A. f ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) ) )
86 19.29 1801 . . . . . . . . . . . . 13  |-  ( ( A. f ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  ->  E. f ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )
8785, 86sylanb 489 . . . . . . . . . . . 12  |-  ( ( A. f  e.  ( Cau `  D ) ( f : Z --> X  ->  f  e.  dom  (
~~> t `  J ) )  /\  E. f
( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )  ->  E. f
( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )
8824ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  M  e.  ZZ )
895ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  D  e.  ( Met `  X ) )
90 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f : Z --> (  _I  `  X ) )
91 feq3 6028 . . . . . . . . . . . . . . . . 17  |-  ( (  _I  `  X )  =  X  ->  (
f : Z --> (  _I 
`  X )  <->  f : Z
--> X ) )
9289, 53, 54, 914syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( f : Z --> (  _I  `  X )  <->  f : Z
--> X ) )
9390, 92mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f : Z --> X )
94 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
9594simprd 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. k  e.  ZZ  A. u  e.  ( s `
 k ) A. v  e.  ( s `  k ) ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
96 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  (
s `  k )  =  ( s `  i ) )
97 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
i ) )
9897breq2d 4665 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  ( u D v )  < 
( ( 1  / 
2 ) ^ i
) ) )
9996, 98raleqbidv 3152 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  ( A. v  e.  (
s `  k )
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. v  e.  ( s `  i
) ( u D v )  <  (
( 1  /  2
) ^ i ) ) )
10096, 99raleqbidv 3152 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( A. u  e.  (
s `  k ) A. v  e.  (
s `  k )
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. u  e.  ( s `  i
) A. v  e.  ( s `  i
) ( u D v )  <  (
( 1  /  2
) ^ i ) ) )
101100cbvralv 3171 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k )  <->  A. i  e.  ZZ  A. u  e.  ( s `
 i ) A. v  e.  ( s `  i ) ( u D v )  < 
( ( 1  / 
2 ) ^ i
) )
10295, 101sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. i  e.  ZZ  A. u  e.  ( s `
 i ) A. v  e.  ( s `  i ) ( u D v )  < 
( ( 1  / 
2 ) ^ i
) )
103 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `  k )  e.  ( s `  n ) )
104 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  j  ->  (
s `  n )  =  ( s `  j ) )
105104eleq2d 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
( f `  k
)  e.  ( s `
 n )  <->  ( f `  k )  e.  ( s `  j ) ) )
106105cbvralv 3171 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
)  <->  A. j  e.  ( M ... k ) ( f `  k
)  e.  ( s `
 j ) )
107 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  ( M ... k )  =  ( M ... i
) )
108 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
f `  k )  =  ( f `  i ) )
109108eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( f `  k
)  e.  ( s `
 j )  <->  ( f `  i )  e.  ( s `  j ) ) )
110107, 109raleqbidv 3152 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  ( A. j  e.  ( M ... k ) ( f `  k )  e.  ( s `  j )  <->  A. j  e.  ( M ... i
) ( f `  i )  e.  ( s `  j ) ) )
111106, 110syl5bb 272 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( A. n  e.  ( M ... k ) ( f `  k )  e.  ( s `  n )  <->  A. j  e.  ( M ... i
) ( f `  i )  e.  ( s `  j ) ) )
112111cbvralv 3171 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
)  <->  A. i  e.  Z  A. j  e.  ( M ... i ) ( f `  i )  e.  ( s `  j ) )
113103, 112sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. i  e.  Z  A. j  e.  ( M ... i ) ( f `  i )  e.  ( s `  j ) )
11489, 38syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  D  e.  ( *Met `  X
) )
115 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  g  e.  (CauFil `  D ) )
116114, 115, 42syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  g  e.  ( Fil `  X ) )
11794simpld 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  s : ZZ --> g )
11826, 1, 88, 89, 93, 102, 113iscmet3lem1 23089 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f  e.  ( Cau `  D ) )
119 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) ) )
120118, 93, 119mp2d 49 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f  e.  dom  (
~~> t `  J ) )
12126, 1, 88, 89, 93, 102, 113, 116, 117, 120iscmet3lem2 23090 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( J  fLim  g )  =/=  (/) )
122121ex 450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
123122exlimdv 1861 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( E. f ( ( f  e.  ( Cau `  D )  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
12487, 123syl5 34 . . . . . . . . . . 11  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( ( A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) )  /\  E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
125124expdimp 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  ->  ( E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) )  ->  ( J  fLim  g )  =/=  (/) ) )
126125an32s 846 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) )  ->  ( J  fLim  g )  =/=  (/) ) )
12784, 126mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( J  fLim  g
)  =/=  (/) )
128127expr 643 . . . . . . 7  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )  ->  ( J  fLim  g )  =/=  (/) ) )
129128exlimdv 1861 . . . . . 6  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( E. s ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )  ->  ( J  fLim  g )  =/=  (/) ) )
13023, 129mpd 15 . . . . 5  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( J  fLim  g )  =/=  (/) )
131130ralrimiva 2966 . . . 4  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  A. g  e.  (CauFil `  D ) ( J 
fLim  g )  =/=  (/) )
1321iscmet 23082 . . . 4  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. g  e.  (CauFil `  D )
( J  fLim  g
)  =/=  (/) ) )
1336, 131, 132sylanbrc 698 . . 3  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  (
CMet `  X )
)
134133ex 450 . 2  |-  ( ph  ->  ( A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) )  ->  D  e.  ( CMet `  X ) ) )
1354, 134impbid2 216 1  |-  ( ph  ->  ( D  e.  (
CMet `  X )  <->  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   |^|_ciin 4521   class class class wbr 4653    _I cid 5023   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   ficfi 8316   1c1 9937    < clt 10074    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   ^cexp 12860   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736   ~~> tclm 21030   Filcfil 21649    fLim cflim 21738  CauFilccfil 23050   Caucca 23051   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-lm 21033  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055
This theorem is referenced by:  iscmet2  23092  iscmet3i  23110  heibor1  33609  rrncms  33632
  Copyright terms: Public domain W3C validator