Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngpr Structured version   Visualization version   Unicode version

Theorem divrngpr 33852
Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
divrngpr  |-  ( R  e.  DivRingOps  ->  R  e.  PrRing )

Proof of Theorem divrngpr
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 eqid 2622 . . . 4  |-  ( 2nd `  R )  =  ( 2nd `  R )
3 eqid 2622 . . . 4  |-  (GId `  ( 1st `  R ) )  =  (GId `  ( 1st `  R ) )
4 eqid 2622 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
51, 2, 3, 4isdrngo1 33755 . . 3  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( ( 2nd `  R
)  |`  ( ( ran  ( 1st `  R
)  \  { (GId `  ( 1st `  R
) ) } )  X.  ( ran  ( 1st `  R )  \  { (GId `  ( 1st `  R ) ) } ) ) )  e. 
GrpOp ) )
65simplbi 476 . 2  |-  ( R  e.  DivRingOps  ->  R  e.  RingOps )
7 eqid 2622 . . 3  |-  (GId `  ( 2nd `  R ) )  =  (GId `  ( 2nd `  R ) )
81, 2, 4, 3, 7dvrunz 33753 . 2  |-  ( R  e.  DivRingOps  ->  (GId `  ( 2nd `  R ) )  =/=  (GId `  ( 1st `  R ) ) )
91, 2, 4, 3divrngidl 33827 . 2  |-  ( R  e.  DivRingOps  ->  ( Idl `  R
)  =  { {
(GId `  ( 1st `  R ) ) } ,  ran  ( 1st `  R ) } )
101, 2, 4, 3, 7smprngopr 33851 . 2  |-  ( ( R  e.  RingOps  /\  (GId `  ( 2nd `  R
) )  =/=  (GId `  ( 1st `  R
) )  /\  ( Idl `  R )  =  { { (GId `  ( 1st `  R ) ) } ,  ran  ( 1st `  R ) } )  ->  R  e.  PrRing )
116, 8, 9, 10syl3anc 1326 1  |-  ( R  e.  DivRingOps  ->  R  e.  PrRing )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179    X. cxp 5112   ran crn 5115    |` cres 5116   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344   RingOpscrngo 33693   DivRingOpscdrng 33747   Idlcidl 33806   PrRingcprrng 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-drngo 33748  df-idl 33809  df-pridl 33810  df-prrngo 33847
This theorem is referenced by:  flddmn  33857
  Copyright terms: Public domain W3C validator