MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem17 Structured version   Visualization version   Unicode version

Theorem fin23lem17 9160
Description: Lemma for fin23 9211. By ? Fin3DS ? ,  U achieves its minimum ( X in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem17  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  e.  ran  U )
Distinct variable groups:    g, i,
t, u, x, a    F, a, t    V, a   
x, a    U, a,
i, u    g, a
Allowed substitution hints:    U( x, t, g)    F( x, u, g, i)    V( x, u, t, g, i)

Proof of Theorem fin23lem17
Dummy variables  c 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
21fnseqom 7550 . . . . 5  |-  U  Fn  om
3 dffn3 6054 . . . . 5  |-  ( U  Fn  om  <->  U : om
--> ran  U )
42, 3mpbi 220 . . . 4  |-  U : om
--> ran  U
5 pwuni 4474 . . . . 5  |-  ran  U  C_ 
~P U. ran  U
61fin23lem16 9157 . . . . . 6  |-  U. ran  U  =  U. ran  t
76pweqi 4162 . . . . 5  |-  ~P U. ran  U  =  ~P U. ran  t
85, 7sseqtri 3637 . . . 4  |-  ran  U  C_ 
~P U. ran  t
9 fss 6056 . . . 4  |-  ( ( U : om --> ran  U  /\  ran  U  C_  ~P U.
ran  t )  ->  U : om --> ~P U. ran  t )
104, 8, 9mp2an 708 . . 3  |-  U : om
--> ~P U. ran  t
11 vex 3203 . . . . . . 7  |-  t  e. 
_V
1211rnex 7100 . . . . . 6  |-  ran  t  e.  _V
1312uniex 6953 . . . . 5  |-  U. ran  t  e.  _V
1413pwex 4848 . . . 4  |-  ~P U. ran  t  e.  _V
15 f1f 6101 . . . . . 6  |-  ( t : om -1-1-> V  -> 
t : om --> V )
16 dmfex 7124 . . . . . 6  |-  ( ( t  e.  _V  /\  t : om --> V )  ->  om  e.  _V )
1711, 15, 16sylancr 695 . . . . 5  |-  ( t : om -1-1-> V  ->  om  e.  _V )
1817adantl 482 . . . 4  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  om  e.  _V )
19 elmapg 7870 . . . 4  |-  ( ( ~P U. ran  t  e.  _V  /\  om  e.  _V )  ->  ( U  e.  ( ~P U. ran  t  ^m  om )  <->  U : om --> ~P U. ran  t ) )
2014, 18, 19sylancr 695 . . 3  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  -> 
( U  e.  ( ~P U. ran  t  ^m  om )  <->  U : om
--> ~P U. ran  t
) )
2110, 20mpbiri 248 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  U  e.  ( ~P U.
ran  t  ^m  om ) )
22 fin23lem17.f . . . . 5  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
2322isfin3ds 9151 . . . 4  |-  ( U. ran  t  e.  F  ->  ( U. ran  t  e.  F  <->  A. b  e.  ( ~P U. ran  t  ^m  om ) ( A. c  e.  om  (
b `  suc  c ) 
C_  ( b `  c )  ->  |^| ran  b  e.  ran  b ) ) )
2423ibi 256 . . 3  |-  ( U. ran  t  e.  F  ->  A. b  e.  ( ~P U. ran  t  ^m  om ) ( A. c  e.  om  (
b `  suc  c ) 
C_  ( b `  c )  ->  |^| ran  b  e.  ran  b ) )
2524adantr 481 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  A. b  e.  ( ~P U. ran  t  ^m  om ) ( A. c  e.  om  ( b `  suc  c )  C_  (
b `  c )  ->  |^| ran  b  e. 
ran  b ) )
261fin23lem13 9154 . . . 4  |-  ( c  e.  om  ->  ( U `  suc  c ) 
C_  ( U `  c ) )
2726rgen 2922 . . 3  |-  A. c  e.  om  ( U `  suc  c )  C_  ( U `  c )
2827a1i 11 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  A. c  e.  om  ( U `  suc  c
)  C_  ( U `  c ) )
29 fveq1 6190 . . . . . 6  |-  ( b  =  U  ->  (
b `  suc  c )  =  ( U `  suc  c ) )
30 fveq1 6190 . . . . . 6  |-  ( b  =  U  ->  (
b `  c )  =  ( U `  c ) )
3129, 30sseq12d 3634 . . . . 5  |-  ( b  =  U  ->  (
( b `  suc  c )  C_  (
b `  c )  <->  ( U `  suc  c
)  C_  ( U `  c ) ) )
3231ralbidv 2986 . . . 4  |-  ( b  =  U  ->  ( A. c  e.  om  ( b `  suc  c )  C_  (
b `  c )  <->  A. c  e.  om  ( U `  suc  c ) 
C_  ( U `  c ) ) )
33 rneq 5351 . . . . . 6  |-  ( b  =  U  ->  ran  b  =  ran  U )
3433inteqd 4480 . . . . 5  |-  ( b  =  U  ->  |^| ran  b  =  |^| ran  U
)
3534, 33eleq12d 2695 . . . 4  |-  ( b  =  U  ->  ( |^| ran  b  e.  ran  b 
<-> 
|^| ran  U  e.  ran  U ) )
3632, 35imbi12d 334 . . 3  |-  ( b  =  U  ->  (
( A. c  e. 
om  ( b `  suc  c )  C_  (
b `  c )  ->  |^| ran  b  e. 
ran  b )  <->  ( A. c  e.  om  ( U `  suc  c ) 
C_  ( U `  c )  ->  |^| ran  U  e.  ran  U ) ) )
3736rspcv 3305 . 2  |-  ( U  e.  ( ~P U. ran  t  ^m  om )  ->  ( A. b  e.  ( ~P U. ran  t  ^m  om ) ( A. c  e.  om  ( b `  suc  c )  C_  (
b `  c )  ->  |^| ran  b  e. 
ran  b )  -> 
( A. c  e. 
om  ( U `  suc  c )  C_  ( U `  c )  ->  |^| ran  U  e. 
ran  U ) ) )
3821, 25, 28, 37syl3c 66 1  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  e.  ran  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   ran crn 5115   suc csuc 5725    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-map 7859
This theorem is referenced by:  fin23lem21  9161
  Copyright terms: Public domain W3C validator