| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem39 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fin23 9211. Thus, we have that |
| Ref | Expression |
|---|---|
| fin23lem33.f |
|
| fin23lem.f |
|
| fin23lem.g |
|
| fin23lem.h |
|
| fin23lem.i |
|
| Ref | Expression |
|---|---|
| fin23lem39 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem33.f |
. . 3
| |
| 2 | fin23lem.f |
. . 3
| |
| 3 | fin23lem.g |
. . 3
| |
| 4 | fin23lem.h |
. . 3
| |
| 5 | fin23lem.i |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | fin23lem38 9171 |
. 2
|
| 7 | 1, 2, 3, 4, 5 | fin23lem34 9168 |
. . . . . . . 8
|
| 8 | 7 | simprd 479 |
. . . . . . 7
|
| 9 | 8 | adantlr 751 |
. . . . . 6
|
| 10 | elpw2g 4827 |
. . . . . . 7
| |
| 11 | 10 | ad2antlr 763 |
. . . . . 6
|
| 12 | 9, 11 | mpbird 247 |
. . . . 5
|
| 13 | eqid 2622 |
. . . . 5
| |
| 14 | 12, 13 | fmptd 6385 |
. . . 4
|
| 15 | pwexg 4850 |
. . . . 5
| |
| 16 | vex 3203 |
. . . . . . 7
| |
| 17 | f1f 6101 |
. . . . . . 7
| |
| 18 | dmfex 7124 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | sylancr 695 |
. . . . . 6
|
| 20 | 2, 19 | syl 17 |
. . . . 5
|
| 21 | elmapg 7870 |
. . . . 5
| |
| 22 | 15, 20, 21 | syl2anr 495 |
. . . 4
|
| 23 | 14, 22 | mpbird 247 |
. . 3
|
| 24 | 1 | isfin3ds 9151 |
. . . . 5
|
| 25 | 24 | ibi 256 |
. . . 4
|
| 26 | 25 | adantl 482 |
. . 3
|
| 27 | 1, 2, 3, 4, 5 | fin23lem35 9169 |
. . . . . . 7
|
| 28 | 27 | pssssd 3704 |
. . . . . 6
|
| 29 | peano2 7086 |
. . . . . . . . 9
| |
| 30 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 31 | 30 | rneqd 5353 |
. . . . . . . . . . 11
|
| 32 | 31 | unieqd 4446 |
. . . . . . . . . 10
|
| 33 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 34 | 33 | rnex 7100 |
. . . . . . . . . . 11
|
| 35 | 34 | uniex 6953 |
. . . . . . . . . 10
|
| 36 | 32, 13, 35 | fvmpt 6282 |
. . . . . . . . 9
|
| 37 | 29, 36 | syl 17 |
. . . . . . . 8
|
| 38 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 39 | 38 | rneqd 5353 |
. . . . . . . . . 10
|
| 40 | 39 | unieqd 4446 |
. . . . . . . . 9
|
| 41 | fvex 6201 |
. . . . . . . . . . 11
| |
| 42 | 41 | rnex 7100 |
. . . . . . . . . 10
|
| 43 | 42 | uniex 6953 |
. . . . . . . . 9
|
| 44 | 40, 13, 43 | fvmpt 6282 |
. . . . . . . 8
|
| 45 | 37, 44 | sseq12d 3634 |
. . . . . . 7
|
| 46 | 45 | adantl 482 |
. . . . . 6
|
| 47 | 28, 46 | mpbird 247 |
. . . . 5
|
| 48 | 47 | ralrimiva 2966 |
. . . 4
|
| 49 | 48 | adantr 481 |
. . 3
|
| 50 | fveq1 6190 |
. . . . . . 7
| |
| 51 | fveq1 6190 |
. . . . . . 7
| |
| 52 | 50, 51 | sseq12d 3634 |
. . . . . 6
|
| 53 | 52 | ralbidv 2986 |
. . . . 5
|
| 54 | rneq 5351 |
. . . . . . 7
| |
| 55 | 54 | inteqd 4480 |
. . . . . 6
|
| 56 | 55, 54 | eleq12d 2695 |
. . . . 5
|
| 57 | 53, 56 | imbi12d 334 |
. . . 4
|
| 58 | 57 | rspcv 3305 |
. . 3
|
| 59 | 23, 26, 49, 58 | syl3c 66 |
. 2
|
| 60 | 6, 59 | mtand 691 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-map 7859 |
| This theorem is referenced by: fin23lem41 9174 |
| Copyright terms: Public domain | W3C validator |