Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln2a Structured version   Visualization version   Unicode version

Theorem islpln2a 34834
Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
Hypotheses
Ref Expression
islpln2a.l  |-  .<_  =  ( le `  K )
islpln2a.j  |-  .\/  =  ( join `  K )
islpln2a.a  |-  A  =  ( Atoms `  K )
islpln2a.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
islpln2a  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  <->  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) ) )

Proof of Theorem islpln2a
StepHypRef Expression
1 oveq1 6657 . . . . . . . 8  |-  ( Q  =  R  ->  ( Q  .\/  R )  =  ( R  .\/  R
) )
2 islpln2a.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
3 islpln2a.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
42, 3hlatjidm 34655 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
543ad2antr2 1227 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( R  .\/  R )  =  R )
61, 5sylan9eqr 2678 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  ( Q  .\/  R )  =  R )
76oveq1d 6665 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  (
( Q  .\/  R
)  .\/  S )  =  ( R  .\/  S ) )
8 simpll 790 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  K  e.  HL )
9 simplr2 1104 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  R  e.  A )
10 simplr3 1105 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  S  e.  A )
11 islpln2a.p . . . . . . . 8  |-  P  =  ( LPlanes `  K )
122, 3, 112atnelpln 34830 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  -.  ( R  .\/  S )  e.  P )
138, 9, 10, 12syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  -.  ( R  .\/  S )  e.  P )
147, 13eqneltrd 2720 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  /\  Q  =  R )  ->  -.  ( ( Q  .\/  R )  .\/  S )  e.  P )
1514ex 450 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( Q  =  R  ->  -.  ( ( Q  .\/  R )  .\/  S )  e.  P ) )
1615necon2ad 2809 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  ->  Q  =/=  R ) )
17 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
1817adantr 481 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  K  e.  Lat )
19 simpr3 1069 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  S  e.  A )
20 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2120, 3atbase 34576 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
2219, 21syl 17 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  S  e.  ( Base `  K
) )
2320, 2, 3hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
24233adant3r3 1276 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
25 islpln2a.l . . . . . . 7  |-  .<_  =  ( le `  K )
2620, 25, 2latleeqj2 17064 . . . . . 6  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  ->  ( S  .<_  ( Q  .\/  R )  <->  ( ( Q 
.\/  R )  .\/  S )  =  ( Q 
.\/  R ) ) )
2718, 22, 24, 26syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( S  .<_  ( Q  .\/  R )  <->  ( ( Q 
.\/  R )  .\/  S )  =  ( Q 
.\/  R ) ) )
282, 3, 112atnelpln 34830 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  -.  ( Q  .\/  R )  e.  P )
29283adant3r3 1276 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  -.  ( Q  .\/  R )  e.  P )
30 eleq1 2689 . . . . . . 7  |-  ( ( ( Q  .\/  R
)  .\/  S )  =  ( Q  .\/  R )  ->  ( (
( Q  .\/  R
)  .\/  S )  e.  P  <->  ( Q  .\/  R )  e.  P ) )
3130notbid 308 . . . . . 6  |-  ( ( ( Q  .\/  R
)  .\/  S )  =  ( Q  .\/  R )  ->  ( -.  ( ( Q  .\/  R )  .\/  S )  e.  P  <->  -.  ( Q  .\/  R )  e.  P ) )
3229, 31syl5ibrcom 237 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( Q  .\/  R )  ->  -.  (
( Q  .\/  R
)  .\/  S )  e.  P ) )
3327, 32sylbid 230 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  ( S  .<_  ( Q  .\/  R )  ->  -.  (
( Q  .\/  R
)  .\/  S )  e.  P ) )
3433con2d 129 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  ->  -.  S  .<_  ( Q  .\/  R ) ) )
3516, 34jcad 555 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  ->  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R ) ) ) )
3625, 2, 3, 11lplni2 34823 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  P )
37363expia 1267 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) )  ->  ( ( Q 
.\/  R )  .\/  S )  e.  P ) )
3835, 37impbid 202 1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  <->  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  islpln2ah  34835  2atmat  34847  dalawlem13  35169  cdleme16d  35568
  Copyright terms: Public domain W3C validator