Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni2 Structured version   Visualization version   Unicode version

Theorem lplni2 34823
Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
lplni2.l  |-  .<_  =  ( le `  K )
lplni2.j  |-  .\/  =  ( join `  K )
lplni2.a  |-  A  =  ( Atoms `  K )
lplni2.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
lplni2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  P )

Proof of Theorem lplni2
Dummy variables  r 
q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )
2 simp3l 1089 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  =/=  R )
3 simp3r 1090 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  -.  S  .<_  ( Q 
.\/  R ) )
4 eqidd 2623 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  S ) )
5 neeq1 2856 . . . . 5  |-  ( q  =  Q  ->  (
q  =/=  r  <->  Q  =/=  r ) )
6 oveq1 6657 . . . . . . 7  |-  ( q  =  Q  ->  (
q  .\/  r )  =  ( Q  .\/  r ) )
76breq2d 4665 . . . . . 6  |-  ( q  =  Q  ->  (
s  .<_  ( q  .\/  r )  <->  s  .<_  ( Q  .\/  r ) ) )
87notbid 308 . . . . 5  |-  ( q  =  Q  ->  ( -.  s  .<_  ( q 
.\/  r )  <->  -.  s  .<_  ( Q  .\/  r
) ) )
96oveq1d 6665 . . . . . 6  |-  ( q  =  Q  ->  (
( q  .\/  r
)  .\/  s )  =  ( ( Q 
.\/  r )  .\/  s ) )
109eqeq2d 2632 . . . . 5  |-  ( q  =  Q  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  r ) 
.\/  s ) ) )
115, 8, 103anbi123d 1399 . . . 4  |-  ( q  =  Q  ->  (
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s ) )  <->  ( Q  =/=  r  /\  -.  s  .<_  ( Q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  r ) 
.\/  s ) ) ) )
12 neeq2 2857 . . . . 5  |-  ( r  =  R  ->  ( Q  =/=  r  <->  Q  =/=  R ) )
13 oveq2 6658 . . . . . . 7  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
1413breq2d 4665 . . . . . 6  |-  ( r  =  R  ->  (
s  .<_  ( Q  .\/  r )  <->  s  .<_  ( Q  .\/  R ) ) )
1514notbid 308 . . . . 5  |-  ( r  =  R  ->  ( -.  s  .<_  ( Q 
.\/  r )  <->  -.  s  .<_  ( Q  .\/  R
) ) )
1613oveq1d 6665 . . . . . 6  |-  ( r  =  R  ->  (
( Q  .\/  r
)  .\/  s )  =  ( ( Q 
.\/  R )  .\/  s ) )
1716eqeq2d 2632 . . . . 5  |-  ( r  =  R  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  r )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  s ) ) )
1812, 15, 173anbi123d 1399 . . . 4  |-  ( r  =  R  ->  (
( Q  =/=  r  /\  -.  s  .<_  ( Q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  r )  .\/  s ) )  <->  ( Q  =/=  R  /\  -.  s  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  s ) ) ) )
19 breq1 4656 . . . . . 6  |-  ( s  =  S  ->  (
s  .<_  ( Q  .\/  R )  <->  S  .<_  ( Q 
.\/  R ) ) )
2019notbid 308 . . . . 5  |-  ( s  =  S  ->  ( -.  s  .<_  ( Q 
.\/  R )  <->  -.  S  .<_  ( Q  .\/  R
) ) )
21 oveq2 6658 . . . . . 6  |-  ( s  =  S  ->  (
( Q  .\/  R
)  .\/  s )  =  ( ( Q 
.\/  R )  .\/  S ) )
2221eqeq2d 2632 . . . . 5  |-  ( s  =  S  ->  (
( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  s )  <->  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )
2320, 223anbi23d 1402 . . . 4  |-  ( s  =  S  ->  (
( Q  =/=  R  /\  -.  s  .<_  ( Q 
.\/  R )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q 
.\/  R )  .\/  s ) )  <->  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) ) )
2411, 18, 23rspc3ev 3326 . . 3  |-  ( ( ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) )
251, 2, 3, 4, 24syl13anc 1328 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q 
.\/  r )  .\/  s ) ) )
26 simp1 1061 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  HL )
27 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
28273ad2ant1 1082 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  Lat )
29 simp21 1094 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  e.  A )
30 simp22 1095 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  e.  A )
31 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
32 lplni2.j . . . . . 6  |-  .\/  =  ( join `  K )
33 lplni2.a . . . . . 6  |-  A  =  ( Atoms `  K )
3431, 32, 33hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
3526, 29, 30, 34syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
36 simp23 1096 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  S  e.  A )
3731, 33atbase 34576 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
3836, 37syl 17 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  S  e.  ( Base `  K ) )
3931, 32latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K ) )
4028, 35, 38, 39syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K
) )
41 lplni2.l . . . 4  |-  .<_  =  ( le `  K )
42 lplni2.p . . . 4  |-  P  =  ( LPlanes `  K )
4331, 41, 32, 33, 42islpln5 34821 . . 3  |-  ( ( K  e.  HL  /\  ( ( Q  .\/  R )  .\/  S )  e.  ( Base `  K
) )  ->  (
( ( Q  .\/  R )  .\/  S )  e.  P  <->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) ) )
4426, 40, 43syl2anc 693 . 2  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( ( Q 
.\/  R )  .\/  S )  e.  P  <->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  ( ( Q  .\/  R )  .\/  S )  =  ( ( q  .\/  r ) 
.\/  s ) ) ) )
4525, 44mpbird 247 1  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  S )  e.  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  islpln2a  34834  2llnjaN  34852  lvolnle3at  34868  dalem42  35000  cdleme16aN  35546
  Copyright terms: Public domain W3C validator