Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2aN Structured version   Visualization version   Unicode version

Theorem islvol2aN 34878
Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
islvol2a.l  |-  .<_  =  ( le `  K )
islvol2a.j  |-  .\/  =  ( join `  K )
islvol2a.a  |-  A  =  ( Atoms `  K )
islvol2a.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
islvol2aN  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  <->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) ) )

Proof of Theorem islvol2aN
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9  |-  ( P  =  Q  ->  ( P  .\/  Q )  =  ( Q  .\/  Q
) )
2 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  K  e.  HL )
3 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  Q  e.  A )
4 islvol2a.j . . . . . . . . . . 11  |-  .\/  =  ( join `  K )
5 islvol2a.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
64, 5hlatjidm 34655 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( Q  .\/  Q
)  =  Q )
72, 3, 6syl2anc 693 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( Q  .\/  Q )  =  Q )
81, 7sylan9eqr 2678 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  /\  P  =  Q )  ->  ( P  .\/  Q )  =  Q )
98oveq1d 6665 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  /\  P  =  Q )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( Q  .\/  R ) )
109oveq1d 6665 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  /\  P  =  Q )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( Q  .\/  R )  .\/  S ) )
11 simprl 794 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  R  e.  A )
12 simprr 796 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  S  e.  A )
13 islvol2a.v . . . . . . . . 9  |-  V  =  ( LVols `  K )
144, 5, 133atnelvolN 34872 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
) )  ->  -.  ( ( Q  .\/  R )  .\/  S )  e.  V )
152, 3, 11, 12, 14syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  -.  ( ( Q  .\/  R )  .\/  S )  e.  V )
1615adantr 481 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  /\  P  =  Q )  ->  -.  ( ( Q  .\/  R )  .\/  S )  e.  V )
1710, 16eqneltrd 2720 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  /\  P  =  Q )  ->  -.  ( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V )
1817ex 450 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( P  =  Q  ->  -.  ( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V ) )
1918necon2ad 2809 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  ->  P  =/=  Q ) )
20 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
212, 20syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  K  e.  Lat )
22 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2322, 5atbase 34576 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
2423ad2antrl 764 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  R  e.  ( Base `  K
) )
2522, 4, 5hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2625adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
27 islvol2a.l . . . . . . 7  |-  .<_  =  ( le `  K )
2822, 27, 4latleeqj2 17064 . . . . . 6  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( R  .<_  ( P  .\/  Q )  <->  ( ( P 
.\/  Q )  .\/  R )  =  ( P 
.\/  Q ) ) )
2921, 24, 26, 28syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( R  .<_  ( P  .\/  Q )  <->  ( ( P 
.\/  Q )  .\/  R )  =  ( P 
.\/  Q ) ) )
30 simpl2 1065 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  P  e.  A )
314, 5, 133atnelvolN 34872 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
) )  ->  -.  ( ( P  .\/  Q )  .\/  S )  e.  V )
322, 30, 3, 12, 31syl13anc 1328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  -.  ( ( P  .\/  Q )  .\/  S )  e.  V )
33 oveq1 6657 . . . . . . . 8  |-  ( ( ( P  .\/  Q
)  .\/  R )  =  ( P  .\/  Q )  ->  ( (
( P  .\/  Q
)  .\/  R )  .\/  S )  =  ( ( P  .\/  Q
)  .\/  S )
)
3433eleq1d 2686 . . . . . . 7  |-  ( ( ( P  .\/  Q
)  .\/  R )  =  ( P  .\/  Q )  ->  ( (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V  <->  ( ( P 
.\/  Q )  .\/  S )  e.  V ) )
3534notbid 308 . . . . . 6  |-  ( ( ( P  .\/  Q
)  .\/  R )  =  ( P  .\/  Q )  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  <->  -.  (
( P  .\/  Q
)  .\/  S )  e.  V ) )
3632, 35syl5ibrcom 237 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( P  .\/  Q )  .\/  R )  =  ( P  .\/  Q )  ->  -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V ) )
3729, 36sylbid 230 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( R  .<_  ( P  .\/  Q )  ->  -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V ) )
3837con2d 129 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  ->  -.  R  .<_  ( P  .\/  Q ) ) )
3922, 5atbase 34576 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
4039ad2antll 765 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  S  e.  ( Base `  K
) )
4122, 4latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( Base `  K ) )
4221, 26, 24, 41syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  e.  ( Base `  K
) )
4322, 27, 4latleeqj2 17064 . . . . . 6  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  R )  e.  ( Base `  K
) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  <->  ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  =  ( ( P  .\/  Q ) 
.\/  R ) ) )
4421, 40, 42, 43syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  <->  ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  =  ( ( P  .\/  Q ) 
.\/  R ) ) )
454, 5, 133atnelvolN 34872 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  -.  ( ( P  .\/  Q )  .\/  R )  e.  V )
462, 30, 3, 11, 45syl13anc 1328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  -.  ( ( P  .\/  Q )  .\/  R )  e.  V )
47 eleq1 2689 . . . . . . 7  |-  ( ( ( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  R )  ->  ( ( ( ( P  .\/  Q
)  .\/  R )  .\/  S )  e.  V  <->  ( ( P  .\/  Q
)  .\/  R )  e.  V ) )
4847notbid 308 . . . . . 6  |-  ( ( ( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  R )  ->  ( -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V  <->  -.  ( ( P  .\/  Q )  .\/  R )  e.  V ) )
4946, 48syl5ibrcom 237 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  =  ( ( P 
.\/  Q )  .\/  R )  ->  -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V ) )
5044, 49sylbid 230 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  ->  -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V ) )
5150con2d 129 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) ) )
5219, 38, 513jcad 1243 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) ) )
5327, 4, 5, 13lvoli2 34867 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  V )
54533expia 1267 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) )  ->  ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  e.  V ) )
5552, 54impbid 202 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  V  <->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator