| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismtyval | Structured version Visualization version Unicode version | ||
| Description: The set of isometries between two metric spaces. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ismtyval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ismty 33598 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | dmeq 5324 |
. . . . . . . . . 10
| |
| 4 | xmetf 22134 |
. . . . . . . . . . 11
| |
| 5 | fdm 6051 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
|
| 7 | 3, 6 | sylan9eqr 2678 |
. . . . . . . . 9
|
| 8 | 7 | ad2ant2r 783 |
. . . . . . . 8
|
| 9 | 8 | dmeqd 5326 |
. . . . . . 7
|
| 10 | dmxpid 5345 |
. . . . . . 7
| |
| 11 | 9, 10 | syl6eq 2672 |
. . . . . 6
|
| 12 | f1oeq2 6128 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | dmeq 5324 |
. . . . . . . . . 10
| |
| 15 | xmetf 22134 |
. . . . . . . . . . 11
| |
| 16 | fdm 6051 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . 10
|
| 18 | 14, 17 | sylan9eqr 2678 |
. . . . . . . . 9
|
| 19 | 18 | ad2ant2l 782 |
. . . . . . . 8
|
| 20 | 19 | dmeqd 5326 |
. . . . . . 7
|
| 21 | dmxpid 5345 |
. . . . . . 7
| |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . 6
|
| 23 | f1oeq3 6129 |
. . . . . 6
| |
| 24 | 22, 23 | syl 17 |
. . . . 5
|
| 25 | 13, 24 | bitrd 268 |
. . . 4
|
| 26 | oveq 6656 |
. . . . . . . 8
| |
| 27 | oveq 6656 |
. . . . . . . 8
| |
| 28 | 26, 27 | eqeqan12d 2638 |
. . . . . . 7
|
| 29 | 28 | adantl 482 |
. . . . . 6
|
| 30 | 11, 29 | raleqbidv 3152 |
. . . . 5
|
| 31 | 11, 30 | raleqbidv 3152 |
. . . 4
|
| 32 | 25, 31 | anbi12d 747 |
. . 3
|
| 33 | 32 | abbidv 2741 |
. 2
|
| 34 | fvssunirn 6217 |
. . 3
| |
| 35 | simpl 473 |
. . 3
| |
| 36 | 34, 35 | sseldi 3601 |
. 2
|
| 37 | fvssunirn 6217 |
. . 3
| |
| 38 | simpr 477 |
. . 3
| |
| 39 | 37, 38 | sseldi 3601 |
. 2
|
| 40 | f1of 6137 |
. . . . . 6
| |
| 41 | 40 | adantr 481 |
. . . . 5
|
| 42 | elfvdm 6220 |
. . . . . 6
| |
| 43 | elfvdm 6220 |
. . . . . 6
| |
| 44 | elmapg 7870 |
. . . . . 6
| |
| 45 | 42, 43, 44 | syl2anr 495 |
. . . . 5
|
| 46 | 41, 45 | syl5ibr 236 |
. . . 4
|
| 47 | 46 | abssdv 3676 |
. . 3
|
| 48 | ovex 6678 |
. . . 4
| |
| 49 | 48 | ssex 4802 |
. . 3
|
| 50 | 47, 49 | syl 17 |
. 2
|
| 51 | 2, 33, 36, 39, 50 | ovmpt2d 6788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-xr 10078 df-xmet 19739 df-ismty 33598 |
| This theorem is referenced by: isismty 33600 |
| Copyright terms: Public domain | W3C validator |