| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version Unicode version | ||
| Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| isoco.b |
|
| isoco.o |
|
| isoco.n |
|
| isoco.c |
|
| isoco.x |
|
| isoco.y |
|
| isoco.z |
|
| isoco.f |
|
| isoco.g |
|
| Ref | Expression |
|---|---|
| isoco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoco.b |
. 2
| |
| 2 | eqid 2622 |
. 2
| |
| 3 | isoco.c |
. 2
| |
| 4 | isoco.x |
. 2
| |
| 5 | isoco.z |
. 2
| |
| 6 | isoco.n |
. 2
| |
| 7 | isoco.y |
. . 3
| |
| 8 | isoco.f |
. . 3
| |
| 9 | isoco.o |
. . 3
| |
| 10 | isoco.g |
. . 3
| |
| 11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 16431 |
. 2
|
| 12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 16426 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-cat 16329 df-cid 16330 df-sect 16407 df-inv 16408 df-iso 16409 |
| This theorem is referenced by: cictr 16465 |
| Copyright terms: Public domain | W3C validator |