MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   Unicode version

Theorem isperf3 20957
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
isperf3  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\ 
A. x  e.  X  -.  { x }  e.  J ) )
Distinct variable groups:    x, J    x, X

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3  |-  X  = 
U. J
21isperf2 20956 . 2  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\  X  C_  ( ( limPt `  J ) `  X ) ) )
3 dfss3 3592 . . . 4  |-  ( X 
C_  ( ( limPt `  J ) `  X
)  <->  A. x  e.  X  x  e.  ( ( limPt `  J ) `  X ) )
41maxlp 20951 . . . . . 6  |-  ( J  e.  Top  ->  (
x  e.  ( (
limPt `  J ) `  X )  <->  ( x  e.  X  /\  -.  {
x }  e.  J
) ) )
54baibd 948 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  X )  ->  ( x  e.  ( ( limPt `  J ) `  X )  <->  -.  { x }  e.  J )
)
65ralbidva 2985 . . . 4  |-  ( J  e.  Top  ->  ( A. x  e.  X  x  e.  ( ( limPt `  J ) `  X )  <->  A. x  e.  X  -.  { x }  e.  J )
)
73, 6syl5bb 272 . . 3  |-  ( J  e.  Top  ->  ( X  C_  ( ( limPt `  J ) `  X
)  <->  A. x  e.  X  -.  { x }  e.  J ) )
87pm5.32i 669 . 2  |-  ( ( J  e.  Top  /\  X  C_  ( ( limPt `  J ) `  X
) )  <->  ( J  e.  Top  /\  A. x  e.  X  -.  { x }  e.  J )
)
92, 8bitri 264 1  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\ 
A. x  e.  X  -.  { x }  e.  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888   Topctop 20698   limPtclp 20938  Perfcperf 20939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-perf 20941
This theorem is referenced by:  perfi  20959  perfopn  20989  t1connperf  21239
  Copyright terms: Public domain W3C validator