| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > maxlp | Structured version Visualization version Unicode version | ||
| Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpfval.1 |
|
| Ref | Expression |
|---|---|
| maxlp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3624 |
. . . . 5
| |
| 2 | lpfval.1 |
. . . . . 6
| |
| 3 | 2 | lpss 20946 |
. . . . 5
|
| 4 | 1, 3 | mpan2 707 |
. . . 4
|
| 5 | 4 | sseld 3602 |
. . 3
|
| 6 | 5 | pm4.71rd 667 |
. 2
|
| 7 | simpl 473 |
. . . . 5
| |
| 8 | 2 | islp 20944 |
. . . . 5
|
| 9 | 7, 1, 8 | sylancl 694 |
. . . 4
|
| 10 | snssi 4339 |
. . . . . 6
| |
| 11 | 2 | clsdif 20857 |
. . . . . 6
|
| 12 | 10, 11 | sylan2 491 |
. . . . 5
|
| 13 | 12 | eleq2d 2687 |
. . . 4
|
| 14 | eldif 3584 |
. . . . . . 7
| |
| 15 | 14 | baib 944 |
. . . . . 6
|
| 16 | 15 | adantl 482 |
. . . . 5
|
| 17 | snssi 4339 |
. . . . . . . . . 10
| |
| 18 | 17 | adantl 482 |
. . . . . . . . 9
|
| 19 | 2 | ntrss2 20861 |
. . . . . . . . . . 11
|
| 20 | 10, 19 | sylan2 491 |
. . . . . . . . . 10
|
| 21 | 20 | adantr 481 |
. . . . . . . . 9
|
| 22 | 18, 21 | eqssd 3620 |
. . . . . . . 8
|
| 23 | 2 | ntropn 20853 |
. . . . . . . . . 10
|
| 24 | 10, 23 | sylan2 491 |
. . . . . . . . 9
|
| 25 | 24 | adantr 481 |
. . . . . . . 8
|
| 26 | 22, 25 | eqeltrd 2701 |
. . . . . . 7
|
| 27 | snidg 4206 |
. . . . . . . . 9
| |
| 28 | 27 | ad2antlr 763 |
. . . . . . . 8
|
| 29 | isopn3i 20886 |
. . . . . . . . 9
| |
| 30 | 29 | adantlr 751 |
. . . . . . . 8
|
| 31 | 28, 30 | eleqtrrd 2704 |
. . . . . . 7
|
| 32 | 26, 31 | impbida 877 |
. . . . . 6
|
| 33 | 32 | notbid 308 |
. . . . 5
|
| 34 | 16, 33 | bitrd 268 |
. . . 4
|
| 35 | 9, 13, 34 | 3bitrd 294 |
. . 3
|
| 36 | 35 | pm5.32da 673 |
. 2
|
| 37 | 6, 36 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-cld 20823 df-ntr 20824 df-cls 20825 df-lp 20940 |
| This theorem is referenced by: isperf3 20957 |
| Copyright terms: Public domain | W3C validator |