MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Structured version   Visualization version   Unicode version

Theorem maxlp 20951
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
maxlp  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3624 . . . . 5  |-  X  C_  X
2 lpfval.1 . . . . . 6  |-  X  = 
U. J
32lpss 20946 . . . . 5  |-  ( ( J  e.  Top  /\  X  C_  X )  -> 
( ( limPt `  J
) `  X )  C_  X )
41, 3mpan2 707 . . . 4  |-  ( J  e.  Top  ->  (
( limPt `  J ) `  X )  C_  X
)
54sseld 3602 . . 3  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  ->  P  e.  X ) )
65pm4.71rd 667 . 2  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  P  e.  ( ( limPt `  J
) `  X )
) ) )
7 simpl 473 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  J  e.  Top )
82islp 20944 . . . . 5  |-  ( ( J  e.  Top  /\  X  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  X )  <->  P  e.  ( ( cls `  J
) `  ( X  \  { P } ) ) ) )
97, 1, 8sylancl 694 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  P  e.  ( ( cls `  J
) `  ( X  \  { P } ) ) ) )
10 snssi 4339 . . . . . 6  |-  ( P  e.  X  ->  { P }  C_  X )
112clsdif 20857 . . . . . 6  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( cls `  J ) `  ( X  \  { P } ) )  =  ( X  \  (
( int `  J
) `  { P } ) ) )
1210, 11sylan2 491 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( cls `  J
) `  ( X  \  { P } ) )  =  ( X 
\  ( ( int `  J ) `  { P } ) ) )
1312eleq2d 2687 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  { P } ) )  <->  P  e.  ( X  \  ( ( int `  J ) `  { P } ) ) ) )
14 eldif 3584 . . . . . . 7  |-  ( P  e.  ( X  \ 
( ( int `  J
) `  { P } ) )  <->  ( P  e.  X  /\  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
1514baib 944 . . . . . 6  |-  ( P  e.  X  ->  ( P  e.  ( X  \  ( ( int `  J
) `  { P } ) )  <->  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
1615adantl 482 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( X  \  ( ( int `  J ) `
 { P }
) )  <->  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
17 snssi 4339 . . . . . . . . . 10  |-  ( P  e.  ( ( int `  J ) `  { P } )  ->  { P }  C_  ( ( int `  J ) `  { P } ) )
1817adantl 482 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  C_  (
( int `  J
) `  { P } ) )
192ntrss2 20861 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( int `  J ) `  { P } )  C_  { P } )
2010, 19sylan2 491 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( int `  J
) `  { P } )  C_  { P } )
2120adantr 481 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  -> 
( ( int `  J
) `  { P } )  C_  { P } )
2218, 21eqssd 3620 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  =  ( ( int `  J
) `  { P } ) )
232ntropn 20853 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( int `  J ) `  { P } )  e.  J )
2410, 23sylan2 491 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( int `  J
) `  { P } )  e.  J
)
2524adantr 481 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  -> 
( ( int `  J
) `  { P } )  e.  J
)
2622, 25eqeltrd 2701 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  e.  J
)
27 snidg 4206 . . . . . . . . 9  |-  ( P  e.  X  ->  P  e.  { P } )
2827ad2antlr 763 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  P  e.  { P } )
29 isopn3i 20886 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  { P }  e.  J
)  ->  ( ( int `  J ) `  { P } )  =  { P } )
3029adantlr 751 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  (
( int `  J
) `  { P } )  =  { P } )
3128, 30eleqtrrd 2704 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  P  e.  ( ( int `  J
) `  { P } ) )
3226, 31impbida 877 . . . . . 6  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( int `  J
) `  { P } )  <->  { P }  e.  J )
)
3332notbid 308 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( -.  P  e.  ( ( int `  J
) `  { P } )  <->  -.  { P }  e.  J )
)
3416, 33bitrd 268 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( X  \  ( ( int `  J ) `
 { P }
) )  <->  -.  { P }  e.  J )
)
359, 13, 343bitrd 294 . . 3  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  -.  { P }  e.  J )
)
3635pm5.32da 673 . 2  |-  ( J  e.  Top  ->  (
( P  e.  X  /\  P  e.  (
( limPt `  J ) `  X ) )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )
376, 36bitrd 268 1  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888   Topctop 20698   intcnt 20821   clsccl 20822   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940
This theorem is referenced by:  isperf3  20957
  Copyright terms: Public domain W3C validator