Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdmpt Structured version   Visualization version   Unicode version

Theorem issmfdmpt 40957
Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra  S". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdmpt.x  |-  F/ x ph
issmfdmpt.a  |-  F/ a
ph
issmfdmpt.s  |-  ( ph  ->  S  e. SAlg )
issmfdmpt.i  |-  ( ph  ->  A  C_  U. S )
issmfdmpt.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
issmfdmpt.p  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  A  |  B  <  a }  e.  ( St  A ) )
Assertion
Ref Expression
issmfdmpt  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
Distinct variable groups:    A, a, x    B, a    S, a
Allowed substitution hints:    ph( x, a)    B( x)    S( x)

Proof of Theorem issmfdmpt
StepHypRef Expression
1 nfmpt1 4747 . 2  |-  F/_ x
( x  e.  A  |->  B )
2 issmfdmpt.a . 2  |-  F/ a
ph
3 issmfdmpt.s . 2  |-  ( ph  ->  S  e. SAlg )
4 issmfdmpt.i . 2  |-  ( ph  ->  A  C_  U. S )
5 issmfdmpt.x . . 3  |-  F/ x ph
6 issmfdmpt.b . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
7 eqid 2622 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
85, 6, 7fmptdf 6387 . 2  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
9 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
109, 6fvmpt2d 6293 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
1110breq1d 4663 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  <  a  <->  B  <  a ) )
1211ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( ( ( x  e.  A  |->  B ) `
 x )  < 
a  <->  B  <  a ) ) )
135, 12ralrimi 2957 . . . . 5  |-  ( ph  ->  A. x  e.  A  ( ( ( x  e.  A  |->  B ) `
 x )  < 
a  <->  B  <  a ) )
14 rabbi 3120 . . . . 5  |-  ( A. x  e.  A  (
( ( x  e.  A  |->  B ) `  x )  <  a  <->  B  <  a )  <->  { x  e.  A  |  (
( x  e.  A  |->  B ) `  x
)  <  a }  =  { x  e.  A  |  B  <  a } )
1513, 14sylib 208 . . . 4  |-  ( ph  ->  { x  e.  A  |  ( ( x  e.  A  |->  B ) `
 x )  < 
a }  =  {
x  e.  A  |  B  <  a } )
1615adantr 481 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  A  |  (
( x  e.  A  |->  B ) `  x
)  <  a }  =  { x  e.  A  |  B  <  a } )
17 issmfdmpt.p . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  A  |  B  <  a }  e.  ( St  A ) )
1816, 17eqeltrd 2701 . 2  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  A  |  (
( x  e.  A  |->  B ) `  x
)  <  a }  e.  ( St  A ) )
191, 2, 3, 4, 8, 18issmfdf 40946 1  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  smfadd  40973  smfrec  40996  smfmul  41002
  Copyright terms: Public domain W3C validator