Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   Unicode version

Theorem smfrec 40996
Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x  |-  F/ x ph
smfrec.s  |-  ( ph  ->  S  e. SAlg )
smfrec.a  |-  ( ph  ->  A  e.  V )
smfrec.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
smfrec.m  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
smfrec.e  |-  C  =  { x  e.  A  |  B  =/=  0 }
Assertion
Ref Expression
smfrec  |-  ( ph  ->  ( x  e.  C  |->  ( 1  /  B
) )  e.  (SMblFn `  S ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)    S( x)    V( x)

Proof of Theorem smfrec
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2  |-  F/ x ph
2 nfv 1843 . 2  |-  F/ a
ph
3 smfrec.s . 2  |-  ( ph  ->  S  e. SAlg )
4 smfrec.e . . . 4  |-  C  =  { x  e.  A  |  B  =/=  0 }
5 ssrab2 3687 . . . 4  |-  { x  e.  A  |  B  =/=  0 }  C_  A
64, 5eqsstri 3635 . . 3  |-  C  C_  A
7 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
8 smfrec.b . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
91, 7, 8dmmptdf 39417 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
109eqcomd 2628 . . . 4  |-  ( ph  ->  A  =  dom  (
x  e.  A  |->  B ) )
11 smfrec.m . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
12 eqid 2622 . . . . 5  |-  dom  (
x  e.  A  |->  B )  =  dom  (
x  e.  A  |->  B )
133, 11, 12smfdmss 40942 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  U. S )
1410, 13eqsstrd 3639 . . 3  |-  ( ph  ->  A  C_  U. S )
156, 14syl5ss 3614 . 2  |-  ( ph  ->  C  C_  U. S )
16 1red 10055 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  1  e.  RR )
176sseli 3599 . . . . 5  |-  ( x  e.  C  ->  x  e.  A )
1817adantl 482 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  A )
1918, 8syldan 487 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  RR )
204eleq2i 2693 . . . . . 6  |-  ( x  e.  C  <->  x  e.  { x  e.  A  |  B  =/=  0 } )
2120biimpi 206 . . . . 5  |-  ( x  e.  C  ->  x  e.  { x  e.  A  |  B  =/=  0 } )
22 rabidim2 39284 . . . . 5  |-  ( x  e.  { x  e.  A  |  B  =/=  0 }  ->  B  =/=  0 )
2321, 22syl 17 . . . 4  |-  ( x  e.  C  ->  B  =/=  0 )
2423adantl 482 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  B  =/=  0 )
2516, 19, 24redivcld 10853 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
1  /  B )  e.  RR )
26 nfv 1843 . . . . . . 7  |-  F/ x  a  e.  RR
271, 26nfan 1828 . . . . . 6  |-  F/ x
( ph  /\  a  e.  RR )
28 nfv 1843 . . . . . 6  |-  F/ x
0  <  a
2927, 28nfan 1828 . . . . 5  |-  F/ x
( ( ph  /\  a  e.  RR )  /\  0  <  a )
3019ad4ant14 1293 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  /\  x  e.  C
)  ->  B  e.  RR )
3123adantl 482 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  /\  x  e.  C
)  ->  B  =/=  0 )
32 simpl 473 . . . . . . 7  |-  ( ( a  e.  RR  /\  0  <  a )  -> 
a  e.  RR )
33 simpr 477 . . . . . . 7  |-  ( ( a  e.  RR  /\  0  <  a )  -> 
0  <  a )
3432, 33elrpd 11869 . . . . . 6  |-  ( ( a  e.  RR  /\  0  <  a )  -> 
a  e.  RR+ )
3534adantll 750 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  a  e.  RR+ )
3629, 30, 31, 35pimrecltpos 40919 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  { x  e.  C  |  (
1  /  B )  <  a }  =  ( { x  e.  C  |  ( 1  / 
a )  <  B }  u.  { x  e.  C  |  B  <  0 } ) )
37 smfrec.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
384, 37rabexd 4814 . . . . . . 7  |-  ( ph  ->  C  e.  _V )
39 eqid 2622 . . . . . . 7  |-  ( St  C )  =  ( St  C )
403, 38, 39subsalsal 40577 . . . . . 6  |-  ( ph  ->  ( St  C )  e. SAlg )
4140ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  ( St  C )  e. SAlg )
423adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  S  e. SAlg
)
4342adantr 481 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  S  e. SAlg )
446a1i 11 . . . . . . . . 9  |-  ( ph  ->  C  C_  A )
453, 11, 44sssmfmpt 40959 . . . . . . . 8  |-  ( ph  ->  ( x  e.  C  |->  B )  e.  (SMblFn `  S ) )
4645adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  ( x  e.  C  |->  B )  e.  (SMblFn `  S
) )
4746adantr 481 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  (
x  e.  C  |->  B )  e.  (SMblFn `  S ) )
4834rprecred 11883 . . . . . . 7  |-  ( ( a  e.  RR  /\  0  <  a )  -> 
( 1  /  a
)  e.  RR )
4948adantll 750 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  (
1  /  a )  e.  RR )
5029, 43, 30, 47, 49smfpimgtmpt 40989 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  { x  e.  C  |  (
1  /  a )  <  B }  e.  ( St  C ) )
51 0red 10041 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
521, 3, 19, 45, 51smfpimltmpt 40955 . . . . . 6  |-  ( ph  ->  { x  e.  C  |  B  <  0 }  e.  ( St  C
) )
5352ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  { x  e.  C  |  B  <  0 }  e.  ( St  C ) )
5441, 50, 53saluncld 40566 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  ( { x  e.  C  |  ( 1  / 
a )  <  B }  u.  { x  e.  C  |  B  <  0 } )  e.  ( St  C ) )
5536, 54eqeltrd 2701 . . 3  |-  ( ( ( ph  /\  a  e.  RR )  /\  0  <  a )  ->  { x  e.  C  |  (
1  /  B )  <  a }  e.  ( St  C ) )
56 nfv 1843 . . . . . . . 8  |-  F/ x  a  =  0
571, 56nfan 1828 . . . . . . 7  |-  F/ x
( ph  /\  a  =  0 )
58 breq2 4657 . . . . . . . . 9  |-  ( a  =  0  ->  (
( 1  /  B
)  <  a  <->  ( 1  /  B )  <  0 ) )
5958ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  a  =  0 )  /\  x  e.  C )  ->  ( ( 1  /  B )  <  a  <->  ( 1  /  B )  <  0 ) )
6019, 24reclt0 39614 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  C )  ->  ( B  <  0  <->  ( 1  /  B )  <  0 ) )
6160bicomd 213 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  (
( 1  /  B
)  <  0  <->  B  <  0 ) )
6261adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  a  =  0 )  /\  x  e.  C )  ->  ( ( 1  /  B )  <  0  <->  B  <  0 ) )
6359, 62bitrd 268 . . . . . . 7  |-  ( ( ( ph  /\  a  =  0 )  /\  x  e.  C )  ->  ( ( 1  /  B )  <  a  <->  B  <  0 ) )
6457, 63rabbida 39274 . . . . . 6  |-  ( (
ph  /\  a  = 
0 )  ->  { x  e.  C  |  (
1  /  B )  <  a }  =  { x  e.  C  |  B  <  0 } )
6552adantr 481 . . . . . 6  |-  ( (
ph  /\  a  = 
0 )  ->  { x  e.  C  |  B  <  0 }  e.  ( St  C ) )
6664, 65eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  a  = 
0 )  ->  { x  e.  C  |  (
1  /  B )  <  a }  e.  ( St  C ) )
6766ad4ant14 1293 . . . 4  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  -.  0  <  a
)  /\  a  = 
0 )  ->  { x  e.  C  |  (
1  /  B )  <  a }  e.  ( St  C ) )
68 simpll 790 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  -.  0  <  a
)  /\  -.  a  =  0 )  -> 
( ph  /\  a  e.  RR ) )
69 simpll 790 . . . . . . 7  |-  ( ( ( a  e.  RR  /\ 
-.  0  <  a
)  /\  -.  a  =  0 )  -> 
a  e.  RR )
70 0red 10041 . . . . . . 7  |-  ( ( ( a  e.  RR  /\ 
-.  0  <  a
)  /\  -.  a  =  0 )  -> 
0  e.  RR )
71 neqne 2802 . . . . . . . 8  |-  ( -.  a  =  0  -> 
a  =/=  0 )
7271adantl 482 . . . . . . 7  |-  ( ( ( a  e.  RR  /\ 
-.  0  <  a
)  /\  -.  a  =  0 )  -> 
a  =/=  0 )
73 simplr 792 . . . . . . 7  |-  ( ( ( a  e.  RR  /\ 
-.  0  <  a
)  /\  -.  a  =  0 )  ->  -.  0  <  a )
7469, 70, 72, 73lttri5d 39513 . . . . . 6  |-  ( ( ( a  e.  RR  /\ 
-.  0  <  a
)  /\  -.  a  =  0 )  -> 
a  <  0 )
7574adantlll 754 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  -.  0  <  a
)  /\  -.  a  =  0 )  -> 
a  <  0 )
76 nfv 1843 . . . . . . . 8  |-  F/ x  a  <  0
7727, 76nfan 1828 . . . . . . 7  |-  F/ x
( ( ph  /\  a  e.  RR )  /\  a  <  0
)
788adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  x  e.  A )  ->  B  e.  RR )
7917, 78sylan2 491 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  x  e.  C )  ->  B  e.  RR )
8079adantlr 751 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  a  <  0
)  /\  x  e.  C )  ->  B  e.  RR )
8123adantl 482 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  a  <  0
)  /\  x  e.  C )  ->  B  =/=  0 )
82 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  RR )
8382adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  a  e.  RR )
84 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  a  <  0 )
8577, 80, 81, 83, 84pimrecltneg 40933 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  { x  e.  C  |  (
1  /  B )  <  a }  =  { x  e.  C  |  B  e.  (
( 1  /  a
) (,) 0 ) } )
8642adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  S  e. SAlg )
8738ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  C  e.  _V )
8846adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  (
x  e.  C  |->  B )  e.  (SMblFn `  S ) )
89 1red 10055 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  a  <  0 )  -> 
1  e.  RR )
90 simpl 473 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  a  <  0 )  -> 
a  e.  RR )
91 lt0ne0 10494 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  a  <  0 )  -> 
a  =/=  0 )
9289, 90, 91redivcld 10853 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  a  <  0 )  -> 
( 1  /  a
)  e.  RR )
9392adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  (
1  /  a )  e.  RR )
9493rexrd 10089 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  (
1  /  a )  e.  RR* )
9551ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  0  e.  RR )
9695rexrd 10089 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  0  e.  RR* )
9777, 86, 87, 80, 88, 94, 96smfpimioompt 40993 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  { x  e.  C  |  B  e.  ( ( 1  / 
a ) (,) 0
) }  e.  ( St  C ) )
9885, 97eqeltrd 2701 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  <  0 )  ->  { x  e.  C  |  (
1  /  B )  <  a }  e.  ( St  C ) )
9968, 75, 98syl2anc 693 . . . 4  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  -.  0  <  a
)  /\  -.  a  =  0 )  ->  { x  e.  C  |  ( 1  /  B )  <  a }  e.  ( St  C
) )
10067, 99pm2.61dan 832 . . 3  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  0  <  a )  ->  { x  e.  C  |  ( 1  /  B )  <  a }  e.  ( St  C
) )
10155, 100pm2.61dan 832 . 2  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  C  |  (
1  /  B )  <  a }  e.  ( St  C ) )
1021, 2, 3, 15, 25, 101issmfdmpt 40957 1  |-  ( ph  ->  ( x  e.  C  |->  ( 1  /  B
) )  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    / cdiv 10684   RR+crp 11832   (,)cioo 12175   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smfdiv  41004
  Copyright terms: Public domain W3C validator