| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfrec | Structured version Visualization version Unicode version | ||
| Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfrec.x |
|
| smfrec.s |
|
| smfrec.a |
|
| smfrec.b |
|
| smfrec.m |
|
| smfrec.e |
|
| Ref | Expression |
|---|---|
| smfrec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfrec.x |
. 2
| |
| 2 | nfv 1843 |
. 2
| |
| 3 | smfrec.s |
. 2
| |
| 4 | smfrec.e |
. . . 4
| |
| 5 | ssrab2 3687 |
. . . 4
| |
| 6 | 4, 5 | eqsstri 3635 |
. . 3
|
| 7 | eqid 2622 |
. . . . . 6
| |
| 8 | smfrec.b |
. . . . . 6
| |
| 9 | 1, 7, 8 | dmmptdf 39417 |
. . . . 5
|
| 10 | 9 | eqcomd 2628 |
. . . 4
|
| 11 | smfrec.m |
. . . . 5
| |
| 12 | eqid 2622 |
. . . . 5
| |
| 13 | 3, 11, 12 | smfdmss 40942 |
. . . 4
|
| 14 | 10, 13 | eqsstrd 3639 |
. . 3
|
| 15 | 6, 14 | syl5ss 3614 |
. 2
|
| 16 | 1red 10055 |
. . 3
| |
| 17 | 6 | sseli 3599 |
. . . . 5
|
| 18 | 17 | adantl 482 |
. . . 4
|
| 19 | 18, 8 | syldan 487 |
. . 3
|
| 20 | 4 | eleq2i 2693 |
. . . . . 6
|
| 21 | 20 | biimpi 206 |
. . . . 5
|
| 22 | rabidim2 39284 |
. . . . 5
| |
| 23 | 21, 22 | syl 17 |
. . . 4
|
| 24 | 23 | adantl 482 |
. . 3
|
| 25 | 16, 19, 24 | redivcld 10853 |
. 2
|
| 26 | nfv 1843 |
. . . . . . 7
| |
| 27 | 1, 26 | nfan 1828 |
. . . . . 6
|
| 28 | nfv 1843 |
. . . . . 6
| |
| 29 | 27, 28 | nfan 1828 |
. . . . 5
|
| 30 | 19 | ad4ant14 1293 |
. . . . 5
|
| 31 | 23 | adantl 482 |
. . . . 5
|
| 32 | simpl 473 |
. . . . . . 7
| |
| 33 | simpr 477 |
. . . . . . 7
| |
| 34 | 32, 33 | elrpd 11869 |
. . . . . 6
|
| 35 | 34 | adantll 750 |
. . . . 5
|
| 36 | 29, 30, 31, 35 | pimrecltpos 40919 |
. . . 4
|
| 37 | smfrec.a |
. . . . . . . 8
| |
| 38 | 4, 37 | rabexd 4814 |
. . . . . . 7
|
| 39 | eqid 2622 |
. . . . . . 7
| |
| 40 | 3, 38, 39 | subsalsal 40577 |
. . . . . 6
|
| 41 | 40 | ad2antrr 762 |
. . . . 5
|
| 42 | 3 | adantr 481 |
. . . . . . 7
|
| 43 | 42 | adantr 481 |
. . . . . 6
|
| 44 | 6 | a1i 11 |
. . . . . . . . 9
|
| 45 | 3, 11, 44 | sssmfmpt 40959 |
. . . . . . . 8
|
| 46 | 45 | adantr 481 |
. . . . . . 7
|
| 47 | 46 | adantr 481 |
. . . . . 6
|
| 48 | 34 | rprecred 11883 |
. . . . . . 7
|
| 49 | 48 | adantll 750 |
. . . . . 6
|
| 50 | 29, 43, 30, 47, 49 | smfpimgtmpt 40989 |
. . . . 5
|
| 51 | 0red 10041 |
. . . . . . 7
| |
| 52 | 1, 3, 19, 45, 51 | smfpimltmpt 40955 |
. . . . . 6
|
| 53 | 52 | ad2antrr 762 |
. . . . 5
|
| 54 | 41, 50, 53 | saluncld 40566 |
. . . 4
|
| 55 | 36, 54 | eqeltrd 2701 |
. . 3
|
| 56 | nfv 1843 |
. . . . . . . 8
| |
| 57 | 1, 56 | nfan 1828 |
. . . . . . 7
|
| 58 | breq2 4657 |
. . . . . . . . 9
| |
| 59 | 58 | ad2antlr 763 |
. . . . . . . 8
|
| 60 | 19, 24 | reclt0 39614 |
. . . . . . . . . 10
|
| 61 | 60 | bicomd 213 |
. . . . . . . . 9
|
| 62 | 61 | adantlr 751 |
. . . . . . . 8
|
| 63 | 59, 62 | bitrd 268 |
. . . . . . 7
|
| 64 | 57, 63 | rabbida 39274 |
. . . . . 6
|
| 65 | 52 | adantr 481 |
. . . . . 6
|
| 66 | 64, 65 | eqeltrd 2701 |
. . . . 5
|
| 67 | 66 | ad4ant14 1293 |
. . . 4
|
| 68 | simpll 790 |
. . . . 5
| |
| 69 | simpll 790 |
. . . . . . 7
| |
| 70 | 0red 10041 |
. . . . . . 7
| |
| 71 | neqne 2802 |
. . . . . . . 8
| |
| 72 | 71 | adantl 482 |
. . . . . . 7
|
| 73 | simplr 792 |
. . . . . . 7
| |
| 74 | 69, 70, 72, 73 | lttri5d 39513 |
. . . . . 6
|
| 75 | 74 | adantlll 754 |
. . . . 5
|
| 76 | nfv 1843 |
. . . . . . . 8
| |
| 77 | 27, 76 | nfan 1828 |
. . . . . . 7
|
| 78 | 8 | adantlr 751 |
. . . . . . . . 9
|
| 79 | 17, 78 | sylan2 491 |
. . . . . . . 8
|
| 80 | 79 | adantlr 751 |
. . . . . . 7
|
| 81 | 23 | adantl 482 |
. . . . . . 7
|
| 82 | simpr 477 |
. . . . . . . 8
| |
| 83 | 82 | adantr 481 |
. . . . . . 7
|
| 84 | simpr 477 |
. . . . . . 7
| |
| 85 | 77, 80, 81, 83, 84 | pimrecltneg 40933 |
. . . . . 6
|
| 86 | 42 | adantr 481 |
. . . . . . 7
|
| 87 | 38 | ad2antrr 762 |
. . . . . . 7
|
| 88 | 46 | adantr 481 |
. . . . . . 7
|
| 89 | 1red 10055 |
. . . . . . . . . 10
| |
| 90 | simpl 473 |
. . . . . . . . . 10
| |
| 91 | lt0ne0 10494 |
. . . . . . . . . 10
| |
| 92 | 89, 90, 91 | redivcld 10853 |
. . . . . . . . 9
|
| 93 | 92 | adantll 750 |
. . . . . . . 8
|
| 94 | 93 | rexrd 10089 |
. . . . . . 7
|
| 95 | 51 | ad2antrr 762 |
. . . . . . . 8
|
| 96 | 95 | rexrd 10089 |
. . . . . . 7
|
| 97 | 77, 86, 87, 80, 88, 94, 96 | smfpimioompt 40993 |
. . . . . 6
|
| 98 | 85, 97 | eqeltrd 2701 |
. . . . 5
|
| 99 | 68, 75, 98 | syl2anc 693 |
. . . 4
|
| 100 | 67, 99 | pm2.61dan 832 |
. . 3
|
| 101 | 55, 100 | pm2.61dan 832 |
. 2
|
| 102 | 1, 2, 3, 15, 25, 101 | issmfdmpt 40957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-acn 8768 df-ac 8939 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-fl 12593 df-rest 16083 df-salg 40529 df-smblfn 40910 |
| This theorem is referenced by: smfdiv 41004 |
| Copyright terms: Public domain | W3C validator |