| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxss2 | Structured version Visualization version Unicode version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixx.1 |
|
| ixxss2.2 |
|
| ixxss2.3 |
|
| Ref | Expression |
|---|---|
| ixxss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 |
. . . . . . . 8
| |
| 2 | 1 | elixx3g 12188 |
. . . . . . 7
|
| 3 | 2 | simplbi 476 |
. . . . . 6
|
| 4 | 3 | adantl 482 |
. . . . 5
|
| 5 | 4 | simp3d 1075 |
. . . 4
|
| 6 | 2 | simprbi 480 |
. . . . . 6
|
| 7 | 6 | adantl 482 |
. . . . 5
|
| 8 | 7 | simpld 475 |
. . . 4
|
| 9 | 7 | simprd 479 |
. . . . 5
|
| 10 | simplr 792 |
. . . . 5
| |
| 11 | 4 | simp2d 1074 |
. . . . . 6
|
| 12 | simpll 790 |
. . . . . 6
| |
| 13 | ixxss2.3 |
. . . . . 6
| |
| 14 | 5, 11, 12, 13 | syl3anc 1326 |
. . . . 5
|
| 15 | 9, 10, 14 | mp2and 715 |
. . . 4
|
| 16 | 4 | simp1d 1073 |
. . . . 5
|
| 17 | ixx.1 |
. . . . . 6
| |
| 18 | 17 | elixx1 12184 |
. . . . 5
|
| 19 | 16, 12, 18 | syl2anc 693 |
. . . 4
|
| 20 | 5, 8, 15, 19 | mpbir3and 1245 |
. . 3
|
| 21 | 20 | ex 450 |
. 2
|
| 22 | 21 | ssrdv 3609 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-xr 10078 |
| This theorem is referenced by: iooss2 12211 leordtval2 21016 mnfnei 21025 psercnlem2 24178 tanord1 24283 |
| Copyright terms: Public domain | W3C validator |