HomeHome Metamath Proof Explorer
Theorem List (p. 122 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrexmul 12101 The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A xe B )  =  ( A  x.  B ) )
 
Theoremxmulf 12102 The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  xe : (
 RR*  X.  RR* ) --> RR*
 
Theoremxmulcl 12103 Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  e.  RR* )
 
Theoremxmulpnf1 12104 Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <  A ) 
 ->  ( A xe +oo )  = +oo )
 
Theoremxmulpnf2 12105 Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <  A ) 
 ->  ( +oo xe A )  = +oo )
 
Theoremxmulmnf1 12106 Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <  A ) 
 ->  ( A xe -oo )  = -oo )
 
Theoremxmulmnf2 12107 Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <  A ) 
 ->  ( -oo xe A )  = -oo )
 
Theoremxmulpnf1n 12108 Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  <  0 ) 
 ->  ( A xe +oo )  = -oo )
 
Theoremxmulid1 12109 Extended real version of mulid1 10037. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A xe 1 )  =  A )
 
Theoremxmulid2 12110 Extended real version of mulid2 10038. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 1 xe A )  =  A )
 
Theoremxmulm1 12111 Extended real version of mulm1 10471. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( -u 1 xe A )  =  -e A )
 
Theoremxmulasslem2 12112 Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( 0  <  A  /\  A  = -oo )  ->  ph )
 
Theoremxmulgt0 12113 Extended real version of mulgt0 10115. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <  A )  /\  ( B  e.  RR*  /\  0  <  B ) )  -> 
 0  <  ( A xe B ) )
 
Theoremxmulge0 12114 Extended real version of mulge0 10546. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B ) )  -> 
 0  <_  ( A xe B ) )
 
Theoremxmulasslem 12115* Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( x  =  D  ->  ( ps  <->  X  =  Y ) )   &    |-  ( x  =  -e D  ->  ( ps 
 <->  E  =  F ) )   &    |-  ( ph  ->  X  e.  RR* )   &    |-  ( ph  ->  Y  e.  RR* )   &    |-  ( ph  ->  D  e.  RR* )   &    |-  ( ( ph  /\  ( x  e.  RR*  /\  0  <  x ) )  ->  ps )   &    |-  ( ph  ->  ( x  =  0  ->  ps )
 )   &    |-  ( ph  ->  E  =  -e X )   &    |-  ( ph  ->  F  =  -e Y )   =>    |-  ( ph  ->  X  =  Y )
 
Theoremxmulasslem3 12116 Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <  A )  /\  ( B  e.  RR*  /\  0  <  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( A xe B ) xe C )  =  ( A xe ( B xe C ) ) )
 
Theoremxmulass 12117 Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 12079 which has to avoid the "undefined" combinations +oo +e -oo and -oo +e +oo. The equivalent "undefined" expression here would be  0 xe +oo, but since this is defined to equal  0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A xe B ) xe C )  =  ( A xe ( B xe C ) ) )
 
Theoremxlemul1a 12118 Extended real version of lemul1a 10877. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( C  e.  RR*  /\  0  <_  C )
 )  /\  A  <_  B )  ->  ( A xe C )  <_  ( B xe C ) )
 
Theoremxlemul2a 12119 Extended real version of lemul2a 10878. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( C  e.  RR*  /\  0  <_  C )
 )  /\  A  <_  B )  ->  ( C xe A )  <_  ( C xe B ) )
 
Theoremxlemul1 12120 Extended real version of lemul1 10875. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <_  B  <->  ( A xe C )  <_  ( B xe C ) ) )
 
Theoremxlemul2 12121 Extended real version of lemul2 10876. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <_  B  <->  ( C xe A )  <_  ( C xe B ) ) )
 
Theoremxltmul1 12122 Extended real version of ltmul1 10873. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( A xe C )  <  ( B xe C ) ) )
 
Theoremxltmul2 12123 Extended real version of ltmul2 10874. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( C xe A )  <  ( C xe B ) ) )
 
Theoremxadddilem 12124 Lemma for xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
 
Theoremxadddi 12125 Distributive property for extended real addition and multiplication. Like xaddass 12079, this has an unusual domain of correctness due to counterexamples like  ( +oo  x.  (
2  -  1 ) )  = -oo  =/=  ( ( +oo  x.  2 )  -  ( +oo  x.  1 ) )  =  ( +oo  - +oo )  =  0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A xe
 ( B +e C ) )  =  ( ( A xe B ) +e
 ( A xe C ) ) )
 
Theoremxadddir 12126 Commuted version of xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
 ( A +e B ) xe C )  =  (
 ( A xe C ) +e
 ( B xe C ) ) )
 
Theoremxadddi2 12127 The assumption that the multiplier be real in xadddi 12125 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
 )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e
 ( A xe C ) ) )
 
Theoremxadddi2r 12128 Commuted version of xadddi2 12127. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  C  e.  RR* )  ->  (
 ( A +e B ) xe C )  =  (
 ( A xe C ) +e
 ( B xe C ) ) )
 
Theoremx2times 12129 Extended real version of 2times 11145. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 2 xe A )  =  ( A +e A ) )
 
Theoremxnegcld 12130 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  -e A  e.  RR* )
 
Theoremxaddcld 12131 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A +e B )  e.  RR* )
 
Theoremxmulcld 12132 Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A xe B )  e.  RR* )
 
Theoremxadd4d 12133 Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 10264. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
 |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo ) )   &    |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
 )   &    |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo ) )   &    |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
 )   =>    |-  ( ph  ->  (
 ( A +e B ) +e
 ( C +e D ) )  =  ( ( A +e C ) +e
 ( B +e D ) ) )
 
Theoremxnn0add4d 12134 Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 12133. (Contributed by AV, 12-Dec-2020.)
 |-  ( ph  ->  A  e. NN0* )   &    |-  ( ph  ->  B  e. NN0* )   &    |-  ( ph  ->  C  e. NN0* )   &    |-  ( ph  ->  D  e. NN0* )   =>    |-  ( ph  ->  (
 ( A +e B ) +e
 ( C +e D ) )  =  ( ( A +e C ) +e
 ( B +e D ) ) )
 
5.5.3  Supremum and infimum on the extended reals
 
Theoremxrsupexmnf 12135* Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.)
 |-  ( E. x  e.  RR*  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  RR*  ( y  <  x  ->  E. z  e.  A  y  <  z ) ) 
 ->  E. x  e.  RR*  ( A. y  e.  ( A  u.  { -oo }
 )  -.  x  <  y 
 /\  A. y  e.  RR*  ( y  <  x  ->  E. z  e.  ( A  u.  { -oo }
 ) y  <  z
 ) ) )
 
Theoremxrinfmexpnf 12136* Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.)
 |-  ( E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) 
 ->  E. x  e.  RR*  ( A. y  e.  ( A  u.  { +oo }
 )  -.  y  <  x 
 /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  ( A  u.  { +oo }
 ) z  <  y
 ) ) )
 
Theoremxrsupsslem 12137* Lemma for xrsupss 12139. (Contributed by NM, 25-Oct-2005.)
 |-  ( ( A  C_  RR*  /\  ( A  C_  RR  \/ +oo  e.  A ) )  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  RR*  ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
Theoremxrinfmsslem 12138* Lemma for xrinfmss 12140. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR*  /\  ( A  C_  RR  \/ -oo  e.  A ) )  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
 
Theoremxrsupss 12139* Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR*  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
Theoremxrinfmss 12140* Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y
 ) ) )
 
Theoremxrinfmss2 12141* Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR*  ( y `'  <  x 
 ->  E. z  e.  A  y `'  <  z ) ) )
 
Theoremxrub 12142* By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e. 
 RR  ( x  <  B  ->  E. y  e.  A  x  <  y )  <->  A. x  e.  RR*  ( x  <  B  ->  E. y  e.  A  x  <  y ) ) )
 
Theoremsupxr 12143* The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.)
 |-  ( ( ( A 
 C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  -.  B  <  x  /\  A. x  e.  RR  ( x  <  B  ->  E. y  e.  A  x  <  y
 ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
 
Theoremsupxr2 12144* The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.)
 |-  ( ( ( A 
 C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  ( x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
 
Theoremsupxrcl 12145 The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.)
 |-  ( A  C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
 
Theoremsupxrun 12146 The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR*  /\  B  C_  RR*  /\  sup ( A ,  RR* ,  <  ) 
 <_  sup ( B ,  RR*
 ,  <  ) )  ->  sup ( ( A  u.  B ) , 
 RR* ,  <  )  = 
 sup ( B ,  RR*
 ,  <  ) )
 
Theoremsupxrmnf 12147 Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  sup ( ( A  u.  { -oo } ) ,  RR* ,  <  )  =  sup ( A ,  RR* ,  <  ) )
 
Theoremsupxrpnf 12148 The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  C_  RR*  /\ +oo  e.  A ) 
 ->  sup ( A ,  RR*
 ,  <  )  = +oo )
 
Theoremsupxrunb1 12149* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  (
 A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR*
 ,  <  )  = +oo ) )
 
Theoremsupxrunb2 12150* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  (
 A. x  e.  RR  E. y  e.  A  x  <  y  <->  sup ( A ,  RR*
 ,  <  )  = +oo ) )
 
Theoremsupxrbnd1 12151* The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  y  <  x  <->  sup ( A ,  RR*
 ,  <  )  < +oo ) )
 
Theoremsupxrbnd2 12152* The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  y 
 <_  x  <->  sup ( A ,  RR*
 ,  <  )  < +oo ) )
 
Theoremxrsup0 12153 The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.)
 |- 
 sup ( (/) ,  RR* ,  <  )  = -oo
 
Theoremsupxrub 12154 A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
 |-  ( ( A  C_  RR*  /\  B  e.  A ) 
 ->  B  <_  sup ( A ,  RR* ,  <  )
 )
 
Theoremsupxrlub 12155* The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  B  <  x ) )
 
Theoremsupxrleub 12156* The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  A. x  e.  A  x  <_  B ) )
 
Theoremsupxrre 12157* The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( A ,  RR*
 ,  <  )  =  sup ( A ,  RR ,  <  ) )
 
Theoremsupxrbnd 12158 The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  sup ( A ,  RR* ,  <  )  < +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
 
Theoremsupxrgtmnf 12159 The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  -> -oo  <  sup ( A ,  RR*
 ,  <  ) )
 
Theoremsupxrre1 12160 The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( sup ( A ,  RR*
 ,  <  )  e.  RR 
 <-> 
 sup ( A ,  RR*
 ,  <  )  < +oo ) )
 
Theoremsupxrre2 12161 The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( sup ( A ,  RR*
 ,  <  )  e.  RR 
 <-> 
 sup ( A ,  RR*
 ,  <  )  =/= +oo ) )
 
Theoremsupxrss 12162 Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.)
 |-  ( ( A  C_  B  /\  B  C_  RR* )  ->  sup ( A ,  RR*
 ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
 
Theoreminfxrcl 12163 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.)
 |-  ( A  C_  RR*  -> inf ( A ,  RR* ,  <  )  e.  RR* )
 
Theoreminfxrlb 12164 A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
 |-  ( ( A  C_  RR*  /\  B  e.  A ) 
 -> inf ( A ,  RR* ,  <  )  <_  B )
 
Theoreminfxrgelb 12165* The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_ inf ( A ,  RR* ,  <  )  <->  A. x  e.  A  B  <_  x ) )
 
Theoreminfxrre 12166* The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
 )  -> inf ( A ,  RR* ,  <  )  = inf ( A ,  RR ,  <  ) )
 
Theoreminfxrmnf 12167 The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.)
 |-  ( ( A  C_  RR*  /\ -oo  e.  A ) 
 -> inf ( A ,  RR* ,  <  )  = -oo )
 
Theoremxrinf0 12168 The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
 |- inf
 ( (/) ,  RR* ,  <  )  = +oo
 
Theoreminfxrss 12169 Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
 |-  ( ( A  C_  B  /\  B  C_  RR* )  -> inf ( B ,  RR* ,  <  )  <_ inf ( A ,  RR* ,  <  )
 )
 
Theoremreltre 12170* For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
 |- 
 A. x  e.  RR  E. y  e.  RR  y  <  x
 
Theoremrpltrp 12171* For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.)
 |- 
 A. x  e.  RR+  E. y  e.  RR+  y  < 
 x
 
Theoremreltxrnmnf 12172* For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
 |- 
 A. x  e.  RR*  ( -oo  <  x  ->  E. y  e.  RR  y  <  x )
 
Theoreminfmremnf 12173 The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.)
 |- inf
 ( RR ,  RR* ,  <  )  = -oo
 
Theoreminfmrp1 12174 The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.)
 |- inf
 ( RR+ ,  RR ,  <  )  =  0
 
5.5.4  Real number intervals
 
Syntaxcioo 12175 Extend class notation with the set of open intervals of extended reals.
 class  (,)
 
Syntaxcioc 12176 Extend class notation with the set of open-below, closed-above intervals of extended reals.
 class  (,]
 
Syntaxcico 12177 Extend class notation with the set of closed-below, open-above intervals of extended reals.
 class  [,)
 
Syntaxcicc 12178 Extend class notation with the set of closed intervals of extended reals.
 class  [,]
 
Definitiondf-ioo 12179* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) } )
 
Definitiondf-ioc 12180* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <_  y ) } )
 
Definitiondf-ico 12181* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
 
Definitiondf-icc 12182* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <_  y ) } )
 
Theoremixxval 12183* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  {
 z  e.  RR*  |  ( A R z  /\  z S B ) }
 )
 
Theoremelixx1 12184* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B ) 
 <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
 
Theoremixxf 12185* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O : (
 RR*  X.  RR* ) --> ~P RR*
 
Theoremixxex 12186* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O  e.  _V
 
Theoremixxssxr 12187* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( A O B )  C_  RR*
 
Theoremelixx3g 12188* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( C  e.  ( A O B )  <-> 
 ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A R C  /\  C S B ) ) )
 
Theoremixxssixx 12189* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w 
 ->  A T w ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w U B ) )   =>    |-  ( A O B )  C_  ( A P B )
 
Theoremixxdisj 12190* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A O B )  i^i  ( B P C ) )  =  (/) )
 
Theoremixxun 12191* Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )   &    |-  Q  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z U y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( w S B  /\  B X C ) 
 ->  w U C ) )   &    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e.  RR* )  ->  ( ( A W B  /\  B T w )  ->  A R w ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  ->  ( ( A O B )  u.  ( B P C ) )  =  ( A Q C ) )
 
Theoremixxin 12192* Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( A  e.  RR*  /\  C  e.  RR*  /\  z  e.  RR* )  ->  ( if ( A  <_  C ,  C ,  A ) R z  <->  ( A R z  /\  C R z ) ) )   &    |-  (
 ( z  e.  RR*  /\  B  e.  RR*  /\  D  e.  RR* )  ->  (
 z S if ( B  <_  D ,  B ,  D )  <->  ( z S B  /\  z S D ) ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A O B )  i^i  ( C O D ) )  =  ( if ( A 
 <_  C ,  C ,  A ) O if ( B  <_  D ,  B ,  D )
 ) )
 
Theoremixxss1 12193* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z S y ) }
 )   &    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W B  /\  B T w ) 
 ->  A R w ) )   =>    |-  ( ( A  e.  RR*  /\  A W B ) 
 ->  ( B P C )  C_  ( A O C ) )
 
Theoremixxss2 12194* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z  /\  z T y ) }
 )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( w T B  /\  B W C )  ->  w S C ) )   =>    |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
 
Theoremixxss12 12195* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W C  /\  C T w ) 
 ->  A R w ) )   &    |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e.  RR* )  ->  ( ( w U D  /\  D X B )  ->  w S B ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D ) 
 C_  ( A O B ) )
 
Theoremixxub 12196* Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w  <  B  ->  w S B ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w  <_  B ) )   &    |-  (
 ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
 ( A O B ) ,  RR* ,  <  )  =  B )
 
Theoremixxlb 12197* Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w  <  B  ->  w S B ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w  <_  B ) )   &    |-  (
 ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  =  A )
 
Theoremiooex 12198 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 (,)  e.  _V
 
Theoremiooval 12199* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
 
Theoremioo0 12200 An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A (,) B )  =  (/)  <->  B  <_  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >