HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   Unicode version

Theorem kbass2 28976
Description: Dirac bra-ket associative law  ( <. A  |  B >. ) <. C  |  =  <. A  | 
(  |  B >.  <. C  |  ) i.e. the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( bra `  A
) `  B )  .fn  ( bra `  C
) )  =  ( ( bra `  A
)  o.  ( B 
ketbra  C ) ) )

Proof of Theorem kbass2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . 4  |-  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
)  e.  _V
2 eqid 2622 . . . 4  |-  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) )  =  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) )
31, 2fnmpti 6022 . . 3  |-  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) )  Fn  ~H
4 bracl 28808 . . . . . 6  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( bra `  A
) `  B )  e.  CC )
5 brafn 28806 . . . . . 6  |-  ( C  e.  ~H  ->  ( bra `  C ) : ~H --> CC )
6 hfmmval 28598 . . . . . 6  |-  ( ( ( ( bra `  A
) `  B )  e.  CC  /\  ( bra `  C ) : ~H --> CC )  ->  ( ( ( bra `  A
) `  B )  .fn  ( bra `  C
) )  =  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) ) )
74, 5, 6syl2an 494 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  C  e.  ~H )  ->  ( ( ( bra `  A ) `
 B )  .fn  ( bra `  C ) )  =  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) ) )
873impa 1259 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( bra `  A
) `  B )  .fn  ( bra `  C
) )  =  ( x  e.  ~H  |->  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) ) )
98fneq1d 5981 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( ( bra `  A ) `  B
)  .fn  ( bra `  C ) )  Fn 
~H 
<->  ( x  e.  ~H  |->  ( ( ( bra `  A ) `  B
)  x.  ( ( bra `  C ) `
 x ) ) )  Fn  ~H )
)
103, 9mpbiri 248 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( bra `  A
) `  B )  .fn  ( bra `  C
) )  Fn  ~H )
11 brafn 28806 . . . . 5  |-  ( A  e.  ~H  ->  ( bra `  A ) : ~H --> CC )
12 kbop 28812 . . . . 5  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( B  ketbra  C ) : ~H --> ~H )
13 fco 6058 . . . . 5  |-  ( ( ( bra `  A
) : ~H --> CC  /\  ( B  ketbra  C ) : ~H --> ~H )  ->  ( ( bra `  A
)  o.  ( B 
ketbra  C ) ) : ~H --> CC )
1411, 12, 13syl2an 494 . . . 4  |-  ( ( A  e.  ~H  /\  ( B  e.  ~H  /\  C  e.  ~H )
)  ->  ( ( bra `  A )  o.  ( B  ketbra  C ) ) : ~H --> CC )
15143impb 1260 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( bra `  A
)  o.  ( B 
ketbra  C ) ) : ~H --> CC )
16 ffn 6045 . . 3  |-  ( ( ( bra `  A
)  o.  ( B 
ketbra  C ) ) : ~H --> CC  ->  (
( bra `  A
)  o.  ( B 
ketbra  C ) )  Fn 
~H )
1715, 16syl 17 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( bra `  A
)  o.  ( B 
ketbra  C ) )  Fn 
~H )
18 simpl1 1064 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  A  e.  ~H )
19 simpl2 1065 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  B  e.  ~H )
20 braval 28803 . . . . 5  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( bra `  A
) `  B )  =  ( B  .ih  A ) )
2118, 19, 20syl2anc 693 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( bra `  A ) `  B
)  =  ( B 
.ih  A ) )
22 simpl3 1066 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  C  e.  ~H )
23 simpr 477 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  x  e.  ~H )
24 braval 28803 . . . . 5  |-  ( ( C  e.  ~H  /\  x  e.  ~H )  ->  ( ( bra `  C
) `  x )  =  ( x  .ih  C ) )
2522, 23, 24syl2anc 693 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( bra `  C ) `  x
)  =  ( x 
.ih  C ) )
2621, 25oveq12d 6668 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( bra `  A ) `
 B )  x.  ( ( bra `  C
) `  x )
)  =  ( ( B  .ih  A )  x.  ( x  .ih  C ) ) )
27 hicl 27937 . . . . . 6  |-  ( ( B  e.  ~H  /\  A  e.  ~H )  ->  ( B  .ih  A
)  e.  CC )
2819, 18, 27syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( B  .ih  A )  e.  CC )
2921, 28eqeltrd 2701 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( bra `  A ) `  B
)  e.  CC )
3022, 5syl 17 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( bra `  C
) : ~H --> CC )
31 hfmval 28603 . . . 4  |-  ( ( ( ( bra `  A
) `  B )  e.  CC  /\  ( bra `  C ) : ~H --> CC  /\  x  e.  ~H )  ->  ( ( ( ( bra `  A
) `  B )  .fn  ( bra `  C
) ) `  x
)  =  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) )
3229, 30, 23, 31syl3anc 1326 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( ( bra `  A
) `  B )  .fn  ( bra `  C
) ) `  x
)  =  ( ( ( bra `  A
) `  B )  x.  ( ( bra `  C
) `  x )
) )
33 hicl 27937 . . . . . 6  |-  ( ( x  e.  ~H  /\  C  e.  ~H )  ->  ( x  .ih  C
)  e.  CC )
3423, 22, 33syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( x  .ih  C )  e.  CC )
35 ax-his3 27941 . . . . 5  |-  ( ( ( x  .ih  C
)  e.  CC  /\  B  e.  ~H  /\  A  e.  ~H )  ->  (
( ( x  .ih  C )  .h  B ) 
.ih  A )  =  ( ( x  .ih  C )  x.  ( B 
.ih  A ) ) )
3634, 19, 18, 35syl3anc 1326 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( x  .ih  C )  .h  B )  .ih  A )  =  ( ( x  .ih  C )  x.  ( B  .ih  A ) ) )
37123adant1 1079 . . . . . 6  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  ketbra  C ) : ~H --> ~H )
38 fvco3 6275 . . . . . 6  |-  ( ( ( B  ketbra  C ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( bra `  A )  o.  ( B  ketbra  C ) ) `
 x )  =  ( ( bra `  A
) `  ( ( B  ketbra  C ) `  x ) ) )
3937, 38sylan 488 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( bra `  A )  o.  ( B  ketbra  C ) ) `  x
)  =  ( ( bra `  A ) `
 ( ( B 
ketbra  C ) `  x
) ) )
40 kbval 28813 . . . . . . 7  |-  ( ( B  e.  ~H  /\  C  e.  ~H  /\  x  e.  ~H )  ->  (
( B  ketbra  C ) `
 x )  =  ( ( x  .ih  C )  .h  B ) )
4119, 22, 23, 40syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( B 
ketbra  C ) `  x
)  =  ( ( x  .ih  C )  .h  B ) )
4241fveq2d 6195 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( bra `  A ) `  (
( B  ketbra  C ) `
 x ) )  =  ( ( bra `  A ) `  (
( x  .ih  C
)  .h  B ) ) )
43 hvmulcl 27870 . . . . . . 7  |-  ( ( ( x  .ih  C
)  e.  CC  /\  B  e.  ~H )  ->  ( ( x  .ih  C )  .h  B )  e.  ~H )
4434, 19, 43syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( x 
.ih  C )  .h  B )  e.  ~H )
45 braval 28803 . . . . . 6  |-  ( ( A  e.  ~H  /\  ( ( x  .ih  C )  .h  B )  e.  ~H )  -> 
( ( bra `  A
) `  ( (
x  .ih  C )  .h  B ) )  =  ( ( ( x 
.ih  C )  .h  B )  .ih  A
) )
4618, 44, 45syl2anc 693 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( bra `  A ) `  (
( x  .ih  C
)  .h  B ) )  =  ( ( ( x  .ih  C
)  .h  B ) 
.ih  A ) )
4739, 42, 463eqtrd 2660 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( bra `  A )  o.  ( B  ketbra  C ) ) `  x
)  =  ( ( ( x  .ih  C
)  .h  B ) 
.ih  A ) )
4828, 34mulcomd 10061 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( B 
.ih  A )  x.  ( x  .ih  C
) )  =  ( ( x  .ih  C
)  x.  ( B 
.ih  A ) ) )
4936, 47, 483eqtr4d 2666 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( bra `  A )  o.  ( B  ketbra  C ) ) `  x
)  =  ( ( B  .ih  A )  x.  ( x  .ih  C ) ) )
5026, 32, 493eqtr4d 2666 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  /\  x  e.  ~H )  ->  ( ( ( ( bra `  A
) `  B )  .fn  ( bra `  C
) ) `  x
)  =  ( ( ( bra `  A
)  o.  ( B 
ketbra  C ) ) `  x ) )
5110, 17, 50eqfnfvd 6314 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( bra `  A
) `  B )  .fn  ( bra `  C
) )  =  ( ( bra `  A
)  o.  ( B 
ketbra  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    |-> cmpt 4729    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    x. cmul 9941   ~Hchil 27776    .h csm 27778    .ih csp 27779    .fn chft 27799   bracbr 27813    ketbra ck 27814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-mulcom 10000  ax-hilex 27856  ax-hfvmul 27862  ax-hfi 27936  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-hfmul 28593  df-bra 28709  df-kb 28710
This theorem is referenced by:  kbass6  28980
  Copyright terms: Public domain W3C validator