Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0nle Structured version   Visualization version   Unicode version

Theorem lhp2at0nle 35321
Description: Inequality for 2 different atoms (or an atom and zero) under co-atom  W. (Contributed by NM, 28-Jul-2013.)
Hypotheses
Ref Expression
lhp2at0nle.l  |-  .<_  =  ( le `  K )
lhp2at0nle.j  |-  .\/  =  ( join `  K )
lhp2at0nle.z  |-  .0.  =  ( 0. `  K )
lhp2at0nle.a  |-  A  =  ( Atoms `  K )
lhp2at0nle.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp2at0nle  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P  .\/  U ) )

Proof of Theorem lhp2at0nle
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  e.  A )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V ) )
2 simpr 477 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  e.  A )  ->  U  e.  A )
3 simpl2r 1115 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  e.  A )  ->  U  .<_  W )
4 simpl3 1066 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  e.  A )  ->  ( V  e.  A  /\  V  .<_  W ) )
5 lhp2at0nle.l . . . 4  |-  .<_  =  ( le `  K )
6 lhp2at0nle.j . . . 4  |-  .\/  =  ( join `  K )
7 lhp2at0nle.a . . . 4  |-  A  =  ( Atoms `  K )
8 lhp2at0nle.h . . . 4  |-  H  =  ( LHyp `  K
)
95, 6, 7, 8lhp2atnle 35319 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P 
.\/  U ) )
101, 2, 3, 4, 9syl121anc 1331 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  e.  A )  ->  -.  V  .<_  ( P  .\/  U ) )
11 simp3r 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  .<_  W )
12 simp12r 1175 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  P  .<_  W )
13 nbrne2 4673 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  P  .<_  W )  ->  V  =/=  P
)
1411, 12, 13syl2anc 693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  =/=  P )
1514neneqd 2799 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  =  P )
16 simp11l 1172 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  HL )
17 hlatl 34647 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
1816, 17syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  AtLat )
19 simp3l 1089 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  A )
20 simp12l 1174 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  P  e.  A )
215, 7atcmp 34598 . . . . . 6  |-  ( ( K  e.  AtLat  /\  V  e.  A  /\  P  e.  A )  ->  ( V  .<_  P  <->  V  =  P ) )
2218, 19, 20, 21syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( V  .<_  P  <->  V  =  P ) )
2315, 22mtbird 315 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  P )
2423adantr 481 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =  .0.  )  ->  -.  V  .<_  P )
25 oveq2 6658 . . . . 5  |-  ( U  =  .0.  ->  ( P  .\/  U )  =  ( P  .\/  .0.  ) )
26 hlol 34648 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
2716, 26syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  OL )
28 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2928, 7atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3020, 29syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  P  e.  ( Base `  K
) )
31 lhp2at0nle.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
3228, 6, 31olj01 34512 . . . . . 6  |-  ( ( K  e.  OL  /\  P  e.  ( Base `  K ) )  -> 
( P  .\/  .0.  )  =  P )
3327, 30, 32syl2anc 693 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( P  .\/  .0.  )  =  P )
3425, 33sylan9eqr 2678 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =  .0.  )  ->  ( P  .\/  U )  =  P )
3534breq2d 4665 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =  .0.  )  ->  ( V  .<_  ( P  .\/  U )  <->  V  .<_  P ) )
3624, 35mtbird 315 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =  .0.  )  ->  -.  V  .<_  ( P  .\/  U ) )
37 simp2l 1087 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( U  e.  A  \/  U  =  .0.  )
)
3810, 36, 37mpjaodan 827 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P  .\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   0.cp0 17037   OLcol 34461   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  lhp2at0ne  35322  cdlemkfid1N  36209
  Copyright terms: Public domain W3C validator