Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   Unicode version

Theorem llnexchb2 35155
Description: Line exchange property (compare cvlatexchb2 34622 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )

Proof of Theorem llnexchb2
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1096 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  N )
2 simp1 1061 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  K  e.  HL )
3 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 llnexch.n . . . . . 6  |-  N  =  ( LLines `  K )
53, 4llnbase 34795 . . . . 5  |-  ( Z  e.  N  ->  Z  e.  ( Base `  K
) )
61, 5syl 17 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  ( Base `  K ) )
7 llnexch.j . . . . 5  |-  .\/  =  ( join `  K )
8 llnexch.a . . . . 5  |-  A  =  ( Atoms `  K )
93, 7, 8, 4islln3 34796 . . . 4  |-  ( ( K  e.  HL  /\  Z  e.  ( Base `  K ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
102, 6, 9syl2anc 693 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
111, 10mpbid 222 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  (
p  .\/  q )
) )
12 simp3r 1090 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  X  =/=  Z )
1312necomd 2849 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  =/=  X )
14 simp11 1091 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  HL )
15 hllat 34650 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  Lat )
17 simp2l 1087 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  A )
183, 8atbase 34576 . . . . . . . . . . . 12  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  ( Base `  K
) )
20 simp2r 1088 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  A )
213, 8atbase 34576 . . . . . . . . . . . 12  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  ( Base `  K
) )
23 simp121 1193 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  N )
243, 4llnbase 34795 . . . . . . . . . . . 12  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  ( Base `  K
) )
26 llnexch.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
273, 26, 7latjle12 17062 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  q  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) ) )  -> 
( ( p  .<_  X  /\  q  .<_  X )  <-> 
( p  .\/  q
)  .<_  X ) )
2816, 19, 22, 25, 27syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .<_  X  /\  q  .<_  X )  <->  ( p  .\/  q )  .<_  X ) )
29 simp3 1063 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  =/=  q )
307, 8, 4llni2 34798 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  p  =/=  q
)  ->  ( p  .\/  q )  e.  N
)
3114, 17, 20, 29, 30syl31anc 1329 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
p  .\/  q )  e.  N )
3226, 4llncmp 34808 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  N  /\  X  e.  N )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3314, 31, 23, 32syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3428, 33bitr2d 269 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =  X  <->  ( p  .<_  X  /\  q  .<_  X ) ) )
3534necon3abid 2830 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  -.  (
p  .<_  X  /\  q  .<_  X ) ) )
36 ianor 509 . . . . . . . 8  |-  ( -.  ( p  .<_  X  /\  q  .<_  X )  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) )
3735, 36syl6bb 276 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) ) )
38 simpl11 1136 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  K  e.  HL )
3923adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  X  e.  N )
40 simp122 1194 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  Y  e.  N )
4140adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  Y  e.  N )
42 simpl2l 1114 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  p  e.  A )
43 simpl2r 1115 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
q  e.  A )
44 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  -.  p  .<_  X )
45 simp13l 1176 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( X  ./\  Y )  e.  A )
4645adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
47 llnexch.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
4826, 7, 47, 8, 4llnexchb2lem 35154 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( p  e.  A  /\  q  e.  A  /\  -.  p  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) )
4938, 39, 41, 42, 43, 44, 46, 48syl331anc 1351 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
5049ex 450 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  p  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
51 simpl11 1136 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  K  e.  HL )
5223adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  X  e.  N )
5340adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  Y  e.  N )
54 simpl2r 1115 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
q  e.  A )
55 simpl2l 1114 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  p  e.  A )
56 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  -.  q  .<_  X )
5745adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
5826, 7, 47, 8, 4llnexchb2lem 35154 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( q  e.  A  /\  p  e.  A  /\  -.  q  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( q  .\/  p
)  <->  ( X  ./\  Y )  =  ( X 
./\  ( q  .\/  p ) ) ) )
5951, 52, 53, 54, 55, 56, 57, 58syl331anc 1351 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( q  .\/  p )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
607, 8hlatjcom 34654 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  =  ( q 
.\/  p ) )
6151, 55, 54, 60syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( p  .\/  q
)  =  ( q 
.\/  p ) )
6261breq2d 4665 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  .<_  ( q 
.\/  p ) ) )
6361oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  (
p  .\/  q )
)  =  ( X 
./\  ( q  .\/  p ) ) )
6463eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  =  ( X 
./\  ( p  .\/  q ) )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
6559, 62, 643bitr4d 300 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
6665ex 450 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  q  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6750, 66jaod 395 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( -.  p  .<_  X  \/  -.  q  .<_  X )  ->  (
( X  ./\  Y
)  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6837, 67sylbid 230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
69 neeq1 2856 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  <->  ( p  .\/  q )  =/=  X
) )
70 breq2 4657 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  .<_  ( p 
.\/  q ) ) )
71 oveq2 6658 . . . . . . . . 9  |-  ( Z  =  ( p  .\/  q )  ->  ( X  ./\  Z )  =  ( X  ./\  (
p  .\/  q )
) )
7271eqeq2d 2632 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  =  ( X 
./\  Z )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
7370, 72bibi12d 335 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  (
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
)  <->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) )
7469, 73imbi12d 334 . . . . . 6  |-  ( Z  =  ( p  .\/  q )  ->  (
( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )  <->  ( (
p  .\/  q )  =/=  X  ->  ( ( X  ./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) ) )
7568, 74syl5ibrcom 237 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
76753exp 1264 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
p  =/=  q  -> 
( Z  =  ( p  .\/  q )  ->  ( Z  =/= 
X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) ) )
7776imp4a 614 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Z  =  (
p  .\/  q )
)  ->  ( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) )
7877rexlimdvv 3037 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  ( p  .\/  q
) )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
7911, 13, 78mp2d 49 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LLinesclln 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-psubsp 34789  df-pmap 34790  df-padd 35082
This theorem is referenced by:  llnexch2N  35156  cdleme20l  35610
  Copyright terms: Public domain W3C validator