MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txlly Structured version   Visualization version   Unicode version

Theorem txlly 21439
Description: If the property  A is preserved under topological products, then so is the property of being locally  A. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
txlly.1  |-  ( ( j  e.  A  /\  k  e.  A )  ->  ( j  tX  k
)  e.  A )
Assertion
Ref Expression
txlly  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( R  tX  S
)  e. Locally  A )
Distinct variable groups:    j, k, A    R, j, k    S, k
Allowed substitution hint:    S( j)

Proof of Theorem txlly
Dummy variables  r 
s  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21275 . . 3  |-  ( R  e. Locally  A  ->  R  e. 
Top )
2 llytop 21275 . . 3  |-  ( S  e. Locally  A  ->  S  e. 
Top )
3 txtop 21372 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 494 . 2  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( R  tX  S
)  e.  Top )
5 eltx 21371 . . . 4  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( x  e.  ( R  tX  S )  <->  A. y  e.  x  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )
6 simpll 790 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  R  e. Locally  A )
7 simprll 802 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  u  e.  R )
8 simprrl 804 . . . . . . . . . 10  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  y  e.  ( u  X.  v
) )
9 xp1st 7198 . . . . . . . . . 10  |-  ( y  e.  ( u  X.  v )  ->  ( 1st `  y )  e.  u )
108, 9syl 17 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( 1st `  y )  e.  u )
11 llyi 21277 . . . . . . . . 9  |-  ( ( R  e. Locally  A  /\  u  e.  R  /\  ( 1st `  y )  e.  u )  ->  E. r  e.  R  ( r  C_  u  /\  ( 1st `  y
)  e.  r  /\  ( Rt  r )  e.  A ) )
126, 7, 10, 11syl3anc 1326 . . . . . . . 8  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. r  e.  R  ( r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A ) )
13 simplr 792 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  S  e. Locally  A )
14 simprlr 803 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  v  e.  S )
15 xp2nd 7199 . . . . . . . . . 10  |-  ( y  e.  ( u  X.  v )  ->  ( 2nd `  y )  e.  v )
168, 15syl 17 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( 2nd `  y )  e.  v )
17 llyi 21277 . . . . . . . . 9  |-  ( ( S  e. Locally  A  /\  v  e.  S  /\  ( 2nd `  y )  e.  v )  ->  E. s  e.  S  ( s  C_  v  /\  ( 2nd `  y
)  e.  s  /\  ( St  s )  e.  A ) )
1813, 14, 16, 17syl3anc 1326 . . . . . . . 8  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. s  e.  S  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) )
19 reeanv 3107 . . . . . . . . 9  |-  ( E. r  e.  R  E. s  e.  S  (
( r  C_  u  /\  ( 1st `  y
)  e.  r  /\  ( Rt  r )  e.  A )  /\  (
s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A
) )  <->  ( E. r  e.  R  (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  E. s  e.  S  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )
201ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  R  e.  Top )
212ad3antlr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  S  e.  Top )
22 simprll 802 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  r  e.  R )
23 simprlr 803 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  s  e.  S )
24 txopn 21405 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( r  e.  R  /\  s  e.  S
) )  ->  (
r  X.  s )  e.  ( R  tX  S ) )
2520, 21, 22, 23, 24syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
r  X.  s )  e.  ( R  tX  S ) )
26 simprl1 1106 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  r  C_  u )
27 simprr1 1109 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  s  C_  v )
28 xpss12 5225 . . . . . . . . . . . . . . . 16  |-  ( ( r  C_  u  /\  s  C_  v )  -> 
( r  X.  s
)  C_  ( u  X.  v ) )
2926, 27, 28syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( r  X.  s )  C_  (
u  X.  v ) )
30 simprrr 805 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  (
u  X.  v ) 
C_  x )
3129, 30sylan9ssr 3617 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
r  X.  s ) 
C_  x )
32 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
3332elpw2 4828 . . . . . . . . . . . . . 14  |-  ( ( r  X.  s )  e.  ~P x  <->  ( r  X.  s )  C_  x
)
3431, 33sylibr 224 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
r  X.  s )  e.  ~P x )
3525, 34elind 3798 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
r  X.  s )  e.  ( ( R 
tX  S )  i^i 
~P x ) )
36 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( u  X.  v )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
378, 36syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
3837adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
39 simprl2 1107 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( 1st `  y )  e.  r )
40 simprr2 1110 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( 2nd `  y )  e.  s )
41 opelxpi 5148 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  y
)  e.  r  /\  ( 2nd `  y )  e.  s )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( r  X.  s ) )
4239, 40, 41syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  <. ( 1st `  y ) ,  ( 2nd `  y )
>.  e.  ( r  X.  s ) )
4342adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  ( r  X.  s ) )
4438, 43eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  y  e.  ( r  X.  s
) )
45 txrest 21434 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( r  e.  R  /\  s  e.  S
) )  ->  (
( R  tX  S
)t  ( r  X.  s
) )  =  ( ( Rt  r )  tX  ( St  s ) ) )
4620, 21, 22, 23, 45syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
( R  tX  S
)t  ( r  X.  s
) )  =  ( ( Rt  r )  tX  ( St  s ) ) )
47 simprl3 1108 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( Rt  r
)  e.  A )
48 simprr3 1111 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( St  s
)  e.  A )
49 txlly.1 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  A  /\  k  e.  A )  ->  ( j  tX  k
)  e.  A )
5049caovcl 6828 . . . . . . . . . . . . . . 15  |-  ( ( ( Rt  r )  e.  A  /\  ( St  s )  e.  A )  ->  ( ( Rt  r )  tX  ( St  s ) )  e.  A
)
5147, 48, 50syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) )  ->  ( ( Rt  r )  tX  ( St  s ) )  e.  A )
5251adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
( Rt  r )  tX  ( St  s ) )  e.  A )
5346, 52eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  (
( R  tX  S
)t  ( r  X.  s
) )  e.  A
)
54 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( z  =  ( r  X.  s )  ->  (
y  e.  z  <->  y  e.  ( r  X.  s
) ) )
55 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( z  =  ( r  X.  s )  ->  (
( R  tX  S
)t  z )  =  ( ( R  tX  S
)t  ( r  X.  s
) ) )
5655eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( z  =  ( r  X.  s )  ->  (
( ( R  tX  S )t  z )  e.  A  <->  ( ( R 
tX  S )t  ( r  X.  s ) )  e.  A ) )
5754, 56anbi12d 747 . . . . . . . . . . . . 13  |-  ( z  =  ( r  X.  s )  ->  (
( y  e.  z  /\  ( ( R 
tX  S )t  z )  e.  A )  <->  ( y  e.  ( r  X.  s
)  /\  ( ( R  tX  S )t  ( r  X.  s ) )  e.  A ) ) )
5857rspcev 3309 . . . . . . . . . . . 12  |-  ( ( ( r  X.  s
)  e.  ( ( R  tX  S )  i^i  ~P x )  /\  ( y  e.  ( r  X.  s
)  /\  ( ( R  tX  S )t  ( r  X.  s ) )  e.  A ) )  ->  E. z  e.  ( ( R  tX  S
)  i^i  ~P x
) ( y  e.  z  /\  ( ( R  tX  S )t  z )  e.  A ) )
5935, 44, 53, 58syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( r  e.  R  /\  s  e.  S
)  /\  ( (
r  C_  u  /\  ( 1st `  y )  e.  r  /\  ( Rt  r )  e.  A
)  /\  ( s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A ) ) ) )  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) )
6059expr 643 . . . . . . . . . 10  |-  ( ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
r  e.  R  /\  s  e.  S )
)  ->  ( (
( r  C_  u  /\  ( 1st `  y
)  e.  r  /\  ( Rt  r )  e.  A )  /\  (
s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A
) )  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
6160rexlimdvva 3038 . . . . . . . . 9  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( E. r  e.  R  E. s  e.  S  ( ( r  C_  u  /\  ( 1st `  y
)  e.  r  /\  ( Rt  r )  e.  A )  /\  (
s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A
) )  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
6219, 61syl5bir 233 . . . . . . . 8  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  (
( E. r  e.  R  ( r  C_  u  /\  ( 1st `  y
)  e.  r  /\  ( Rt  r )  e.  A )  /\  E. s  e.  S  (
s  C_  v  /\  ( 2nd `  y )  e.  s  /\  ( St  s )  e.  A
) )  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
6312, 18, 62mp2and 715 . . . . . . 7  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) )
6463expr 643 . . . . . 6  |-  ( ( ( R  e. Locally  A  /\  S  e. Locally  A )  /\  ( u  e.  R  /\  v  e.  S
) )  ->  (
( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
)  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
6564rexlimdvva 3038 . . . . 5  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  x
)  ->  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
6665ralimdv 2963 . . . 4  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( A. y  e.  x  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  x
)  ->  A. y  e.  x  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
675, 66sylbid 230 . . 3  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( x  e.  ( R  tX  S )  ->  A. y  e.  x  E. z  e.  (
( R  tX  S
)  i^i  ~P x
) ( y  e.  z  /\  ( ( R  tX  S )t  z )  e.  A ) ) )
6867ralrimiv 2965 . 2  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  ->  A. x  e.  ( R  tX  S ) A. y  e.  x  E. z  e.  ( ( R  tX  S )  i^i 
~P x ) ( y  e.  z  /\  ( ( R  tX  S )t  z )  e.  A ) )
69 islly 21271 . 2  |-  ( ( R  tX  S )  e. Locally  A  <->  ( ( R 
tX  S )  e. 
Top  /\  A. x  e.  ( R  tX  S
) A. y  e.  x  E. z  e.  ( ( R  tX  S )  i^i  ~P x ) ( y  e.  z  /\  (
( R  tX  S
)t  z )  e.  A
) ) )
704, 68, 69sylanbrc 698 1  |-  ( ( R  e. Locally  A  /\  S  e. Locally  A )  -> 
( R  tX  S
)  e. Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   ↾t crest 16081   Topctop 20698  Locally clly 21267    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-lly 21269  df-tx 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator