MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimco Structured version   Visualization version   Unicode version

Theorem lmimco 20183
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmimco  |-  ( ( F  e.  ( S LMIso 
T )  /\  G  e.  ( R LMIso  S ) )  ->  ( F  o.  G )  e.  ( R LMIso  T ) )

Proof of Theorem lmimco
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2622 . . 3  |-  ( Base `  T )  =  (
Base `  T )
31, 2islmim 19062 . 2  |-  ( F  e.  ( S LMIso  T
)  <->  ( F  e.  ( S LMHom  T )  /\  F : (
Base `  S ) -1-1-onto-> ( Base `  T ) ) )
4 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
54, 1islmim 19062 . 2  |-  ( G  e.  ( R LMIso  S
)  <->  ( G  e.  ( R LMHom  S )  /\  G : (
Base `  R ) -1-1-onto-> ( Base `  S ) ) )
6 lmhmco 19043 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( R LMHom  S ) )  ->  ( F  o.  G )  e.  ( R LMHom  T ) )
76ad2ant2r 783 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : ( Base `  S
)
-1-1-onto-> ( Base `  T )
)  /\  ( G  e.  ( R LMHom  S )  /\  G : (
Base `  R ) -1-1-onto-> ( Base `  S ) ) )  ->  ( F  o.  G )  e.  ( R LMHom  T ) )
8 f1oco 6159 . . . 4  |-  ( ( F : ( Base `  S ) -1-1-onto-> ( Base `  T
)  /\  G :
( Base `  R ) -1-1-onto-> ( Base `  S ) )  ->  ( F  o.  G ) : (
Base `  R ) -1-1-onto-> ( Base `  T ) )
98ad2ant2l 782 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : ( Base `  S
)
-1-1-onto-> ( Base `  T )
)  /\  ( G  e.  ( R LMHom  S )  /\  G : (
Base `  R ) -1-1-onto-> ( Base `  S ) ) )  ->  ( F  o.  G ) : (
Base `  R ) -1-1-onto-> ( Base `  T ) )
104, 2islmim 19062 . . 3  |-  ( ( F  o.  G )  e.  ( R LMIso  T
)  <->  ( ( F  o.  G )  e.  ( R LMHom  T )  /\  ( F  o.  G ) : (
Base `  R ) -1-1-onto-> ( Base `  T ) ) )
117, 9, 10sylanbrc 698 . 2  |-  ( ( ( F  e.  ( S LMHom  T )  /\  F : ( Base `  S
)
-1-1-onto-> ( Base `  T )
)  /\  ( G  e.  ( R LMHom  S )  /\  G : (
Base `  R ) -1-1-onto-> ( Base `  S ) ) )  ->  ( F  o.  G )  e.  ( R LMIso  T ) )
123, 5, 11syl2anb 496 1  |-  ( ( F  e.  ( S LMIso 
T )  /\  G  e.  ( R LMIso  S ) )  ->  ( F  o.  G )  e.  ( R LMIso  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   LMHom clmhm 19019   LMIso clmim 19020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-lmod 18865  df-lmhm 19022  df-lmim 19023
This theorem is referenced by:  lmictra  20184
  Copyright terms: Public domain W3C validator