MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Structured version   Visualization version   Unicode version

Theorem lmhmco 19043
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M LMHom  O ) )

Proof of Theorem lmhmco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2622 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 eqid 2622 . 2  |-  ( .s
`  O )  =  ( .s `  O
)
4 eqid 2622 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
5 eqid 2622 . 2  |-  (Scalar `  O )  =  (Scalar `  O )
6 eqid 2622 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
7 lmhmlmod1 19033 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  M  e.  LMod )
87adantl 482 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  M  e.  LMod )
9 lmhmlmod2 19032 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  O  e.  LMod )
109adantr 481 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  O  e.  LMod )
11 eqid 2622 . . . 4  |-  (Scalar `  N )  =  (Scalar `  N )
1211, 5lmhmsca 19030 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  (Scalar `  O
)  =  (Scalar `  N ) )
134, 11lmhmsca 19030 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  (Scalar `  N
)  =  (Scalar `  M ) )
1412, 13sylan9eq 2676 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  (Scalar `  O
)  =  (Scalar `  M ) )
15 lmghm 19031 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  F  e.  ( N  GrpHom  O ) )
16 lmghm 19031 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  G  e.  ( M  GrpHom  N ) )
17 ghmco 17680 . . 3  |-  ( ( F  e.  ( N 
GrpHom  O )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o.  G )  e.  ( M  GrpHom  O ) )
1815, 16, 17syl2an 494 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M  GrpHom  O ) )
19 simplr 792 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  e.  ( M LMHom  N ) )
20 simprl 794 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  M ) ) )
21 simprr 796 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
22 eqid 2622 . . . . . . 7  |-  ( .s
`  N )  =  ( .s `  N
)
234, 6, 1, 2, 22lmhmlin 19035 . . . . . 6  |-  ( ( G  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( G `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( G `  y ) ) )
2419, 20, 21, 23syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( G `  y
) ) )
2524fveq2d 6195 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( G `  ( x ( .s
`  M ) y ) ) )  =  ( F `  (
x ( .s `  N ) ( G `
 y ) ) ) )
26 simpll 790 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  e.  ( N LMHom  O ) )
2713fveq2d 6195 . . . . . . 7  |-  ( G  e.  ( M LMHom  N
)  ->  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  M )
) )
2827ad2antlr 763 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  (Scalar `  N
) )  =  (
Base `  (Scalar `  M
) ) )
2920, 28eleqtrrd 2704 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  N ) ) )
30 eqid 2622 . . . . . . . . 9  |-  ( Base `  N )  =  (
Base `  N )
311, 30lmhmf 19034 . . . . . . . 8  |-  ( G  e.  ( M LMHom  N
)  ->  G :
( Base `  M ) --> ( Base `  N )
)
3231adantl 482 . . . . . . 7  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  G :
( Base `  M ) --> ( Base `  N )
)
3332ffvelrnda 6359 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( G `  y )  e.  ( Base `  N
) )
3433adantrl 752 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
35 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  N )
)
3611, 35, 30, 22, 3lmhmlin 19035 . . . . 5  |-  ( ( F  e.  ( N LMHom 
O )  /\  x  e.  ( Base `  (Scalar `  N ) )  /\  ( G `  y )  e.  ( Base `  N
) )  ->  ( F `  ( x
( .s `  N
) ( G `  y ) ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
3726, 29, 34, 36syl3anc 1326 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( .s `  N
) ( G `  y ) ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
3825, 37eqtrd 2656 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( G `  ( x ( .s
`  M ) y ) ) )  =  ( x ( .s
`  O ) ( F `  ( G `
 y ) ) ) )
39 ffn 6045 . . . . . 6  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
4032, 39syl 17 . . . . 5  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  G  Fn  ( Base `  M )
)
4140adantr 481 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
427ad2antlr 763 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  M  e.  LMod )
431, 4, 2, 6lmodvscl 18880 . . . . 5  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( x ( .s
`  M ) y )  e.  ( Base `  M ) )
4442, 20, 21, 43syl3anc 1326 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  M ) y )  e.  ( Base `  M
) )
45 fvco2 6273 . . . 4  |-  ( ( G  Fn  ( Base `  M )  /\  (
x ( .s `  M ) y )  e.  ( Base `  M
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( F `  ( G `  ( x ( .s `  M
) y ) ) ) )
4641, 44, 45syl2anc 693 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( F `  ( G `  ( x ( .s `  M
) y ) ) ) )
47 fvco2 6273 . . . . 5  |-  ( ( G  Fn  ( Base `  M )  /\  y  e.  ( Base `  M
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
4841, 21, 47syl2anc 693 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
4948oveq2d 6666 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  O ) ( ( F  o.  G ) `
 y ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
5038, 46, 493eqtr4d 2666 . 2  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  O ) ( ( F  o.  G ) `  y
) ) )
511, 2, 3, 4, 5, 6, 8, 10, 14, 18, 50islmhmd 19039 1  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M LMHom  O ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  lmimco  20183  nmhmco  22560  mendring  37762
  Copyright terms: Public domain W3C validator