MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngne Structured version   Visualization version   Unicode version

Theorem tglngne 25445
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglngval.p  |-  P  =  ( Base `  G
)
tglngval.l  |-  L  =  (LineG `  G )
tglngval.i  |-  I  =  (Itv `  G )
tglngval.g  |-  ( ph  ->  G  e. TarskiG )
tglngval.x  |-  ( ph  ->  X  e.  P )
tglngval.y  |-  ( ph  ->  Y  e.  P )
tglngne.1  |-  ( ph  ->  Z  e.  ( X L Y ) )
Assertion
Ref Expression
tglngne  |-  ( ph  ->  X  =/=  Y )

Proof of Theorem tglngne
StepHypRef Expression
1 tglngne.1 . . . . . 6  |-  ( ph  ->  Z  e.  ( X L Y ) )
2 df-ov 6653 . . . . . 6  |-  ( X L Y )  =  ( L `  <. X ,  Y >. )
31, 2syl6eleq 2711 . . . . 5  |-  ( ph  ->  Z  e.  ( L `
 <. X ,  Y >. ) )
4 elfvdm 6220 . . . . 5  |-  ( Z  e.  ( L `  <. X ,  Y >. )  ->  <. X ,  Y >.  e.  dom  L )
53, 4syl 17 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  L )
6 tglngval.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
7 tglngval.p . . . . . 6  |-  P  =  ( Base `  G
)
8 tglngval.l . . . . . 6  |-  L  =  (LineG `  G )
9 tglngval.i . . . . . 6  |-  I  =  (Itv `  G )
107, 8, 9tglnfn 25442 . . . . 5  |-  ( G  e. TarskiG  ->  L  Fn  (
( P  X.  P
)  \  _I  )
)
11 fndm 5990 . . . . 5  |-  ( L  Fn  ( ( P  X.  P )  \  _I  )  ->  dom  L  =  ( ( P  X.  P )  \  _I  ) )
126, 10, 113syl 18 . . . 4  |-  ( ph  ->  dom  L  =  ( ( P  X.  P
)  \  _I  )
)
135, 12eleqtrd 2703 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e.  ( ( P  X.  P )  \  _I  ) )
1413eldifbd 3587 . 2  |-  ( ph  ->  -.  <. X ,  Y >.  e.  _I  )
15 df-br 4654 . . . 4  |-  ( X  _I  Y  <->  <. X ,  Y >.  e.  _I  )
16 tglngval.y . . . . 5  |-  ( ph  ->  Y  e.  P )
17 ideqg 5273 . . . . 5  |-  ( Y  e.  P  ->  ( X  _I  Y  <->  X  =  Y ) )
1816, 17syl 17 . . . 4  |-  ( ph  ->  ( X  _I  Y  <->  X  =  Y ) )
1915, 18syl5bbr 274 . . 3  |-  ( ph  ->  ( <. X ,  Y >.  e.  _I  <->  X  =  Y ) )
2019necon3bbid 2831 . 2  |-  ( ph  ->  ( -.  <. X ,  Y >.  e.  _I  <->  X  =/=  Y ) )
2114, 20mpbid 222 1  |-  ( ph  ->  X  =/=  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   <.cop 4183   class class class wbr 4653    _I cid 5023    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-trkg 25352
This theorem is referenced by:  lnhl  25510  tglnne  25523  tglineneq  25539  tglineinteq  25540  ncolncol  25541  coltr  25542  coltr3  25543  perprag  25618  opphl  25646  hlpasch  25648
  Copyright terms: Public domain W3C validator