Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnnat Structured version   Visualization version   Unicode version

Theorem lnnat 34713
Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
lnnat.j  |-  .\/  =  ( join `  K )
lnnat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
lnnat  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  -.  ( P  .\/  Q
)  e.  A ) )

Proof of Theorem lnnat
StepHypRef Expression
1 simpl1 1064 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
2 simpl2 1065 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
3 eqid 2622 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
4 eqid 2622 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
5 lnnat.a . . . . . . 7  |-  A  =  ( Atoms `  K )
63, 4, 5atcvr0 34575 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( 0. `  K
) (  <o  `  K
) P )
71, 2, 6syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( 0. `  K ) (  <o  `  K ) P )
8 lnnat.j . . . . . . 7  |-  .\/  =  ( join `  K )
98, 4, 5atcvr1 34703 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P (  <o  `  K )
( P  .\/  Q
) ) )
109biimpa 501 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P (  <o  `  K ) ( P  .\/  Q ) )
11 hlop 34649 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
12 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1312, 3op0cl 34471 . . . . . . 7  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
141, 11, 133syl 18 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( 0. `  K )  e.  (
Base `  K )
)
1512, 5atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
162, 15syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  ( Base `  K )
)
17 hllat 34650 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  Lat )
19 simpl3 1066 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
2012, 5atbase 34576 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2119, 20syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  ( Base `  K )
)
2212, 8latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2318, 16, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
2412, 4cvrntr 34711 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( 0. `  K )  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( ( 0.
`  K ) ( 
<o  `  K ) P  /\  P (  <o  `  K ) ( P 
.\/  Q ) )  ->  -.  ( 0. `  K ) (  <o  `  K ) ( P 
.\/  Q ) ) )
251, 14, 16, 23, 24syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( (
( 0. `  K
) (  <o  `  K
) P  /\  P
(  <o  `  K )
( P  .\/  Q
) )  ->  -.  ( 0. `  K ) (  <o  `  K )
( P  .\/  Q
) ) )
267, 10, 25mp2and 715 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  -.  ( 0. `  K ) ( 
<o  `  K ) ( P  .\/  Q ) )
27 simpll1 1100 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  Q )  e.  A )  ->  K  e.  HL )
283, 4, 5atcvr0 34575 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  A )  -> 
( 0. `  K
) (  <o  `  K
) ( P  .\/  Q ) )
2927, 28sylancom 701 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  Q )  e.  A )  ->  ( 0. `  K ) ( 
<o  `  K ) ( P  .\/  Q ) )
3026, 29mtand 691 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  -.  ( P  .\/  Q )  e.  A )
3130ex 450 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  ->  -.  ( P  .\/  Q )  e.  A ) )
328, 5hlatjidm 34655 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P  .\/  P
)  =  P )
33323adant3 1081 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  P
)  =  P )
34 simp2 1062 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  e.  A )
3533, 34eqeltrd 2701 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  P
)  e.  A )
36 oveq2 6658 . . . . 5  |-  ( P  =  Q  ->  ( P  .\/  P )  =  ( P  .\/  Q
) )
3736eleq1d 2686 . . . 4  |-  ( P  =  Q  ->  (
( P  .\/  P
)  e.  A  <->  ( P  .\/  Q )  e.  A
) )
3835, 37syl5ibcom 235 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =  Q  ->  ( P  .\/  Q )  e.  A ) )
3938necon3bd 2808 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( -.  ( P 
.\/  Q )  e.  A  ->  P  =/=  Q ) )
4031, 39impbid 202 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  -.  ( P  .\/  Q
)  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   joincjn 16944   0.cp0 17037   Latclat 17045   OPcops 34459    <o ccvr 34549   Atomscatm 34550   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  2atjlej  34765  cdleme11h  35553
  Copyright terms: Public domain W3C validator