MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnolin Structured version   Visualization version   Unicode version

Theorem lnolin 27609
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1  |-  X  =  ( BaseSet `  U )
lnoval.2  |-  Y  =  ( BaseSet `  W )
lnoval.3  |-  G  =  ( +v `  U
)
lnoval.4  |-  H  =  ( +v `  W
)
lnoval.5  |-  R  =  ( .sOLD `  U )
lnoval.6  |-  S  =  ( .sOLD `  W )
lnoval.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnolin  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( T `  (
( A R B ) G C ) )  =  ( ( A S ( T `
 B ) ) H ( T `  C ) ) )

Proof of Theorem lnolin
Dummy variables  u  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 lnoval.2 . . . . 5  |-  Y  =  ( BaseSet `  W )
3 lnoval.3 . . . . 5  |-  G  =  ( +v `  U
)
4 lnoval.4 . . . . 5  |-  H  =  ( +v `  W
)
5 lnoval.5 . . . . 5  |-  R  =  ( .sOLD `  U )
6 lnoval.6 . . . . 5  |-  S  =  ( .sOLD `  W )
7 lnoval.7 . . . . 5  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7islno 27608 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. u  e.  CC  A. w  e.  X  A. t  e.  X  ( T `  ( ( u R w ) G t ) )  =  ( ( u S ( T `  w ) ) H ( T `
 t ) ) ) ) )
98biimp3a 1432 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T : X --> Y  /\  A. u  e.  CC  A. w  e.  X  A. t  e.  X  ( T `  ( (
u R w ) G t ) )  =  ( ( u S ( T `  w ) ) H ( T `  t
) ) ) )
109simprd 479 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  A. u  e.  CC  A. w  e.  X  A. t  e.  X  ( T `  ( ( u R w ) G t ) )  =  ( ( u S ( T `  w ) ) H ( T `
 t ) ) )
11 oveq1 6657 . . . . . 6  |-  ( u  =  A  ->  (
u R w )  =  ( A R w ) )
1211oveq1d 6665 . . . . 5  |-  ( u  =  A  ->  (
( u R w ) G t )  =  ( ( A R w ) G t ) )
1312fveq2d 6195 . . . 4  |-  ( u  =  A  ->  ( T `  ( (
u R w ) G t ) )  =  ( T `  ( ( A R w ) G t ) ) )
14 oveq1 6657 . . . . 5  |-  ( u  =  A  ->  (
u S ( T `
 w ) )  =  ( A S ( T `  w
) ) )
1514oveq1d 6665 . . . 4  |-  ( u  =  A  ->  (
( u S ( T `  w ) ) H ( T `
 t ) )  =  ( ( A S ( T `  w ) ) H ( T `  t
) ) )
1613, 15eqeq12d 2637 . . 3  |-  ( u  =  A  ->  (
( T `  (
( u R w ) G t ) )  =  ( ( u S ( T `
 w ) ) H ( T `  t ) )  <->  ( T `  ( ( A R w ) G t ) )  =  ( ( A S ( T `  w ) ) H ( T `
 t ) ) ) )
17 oveq2 6658 . . . . . 6  |-  ( w  =  B  ->  ( A R w )  =  ( A R B ) )
1817oveq1d 6665 . . . . 5  |-  ( w  =  B  ->  (
( A R w ) G t )  =  ( ( A R B ) G t ) )
1918fveq2d 6195 . . . 4  |-  ( w  =  B  ->  ( T `  ( ( A R w ) G t ) )  =  ( T `  (
( A R B ) G t ) ) )
20 fveq2 6191 . . . . . 6  |-  ( w  =  B  ->  ( T `  w )  =  ( T `  B ) )
2120oveq2d 6666 . . . . 5  |-  ( w  =  B  ->  ( A S ( T `  w ) )  =  ( A S ( T `  B ) ) )
2221oveq1d 6665 . . . 4  |-  ( w  =  B  ->  (
( A S ( T `  w ) ) H ( T `
 t ) )  =  ( ( A S ( T `  B ) ) H ( T `  t
) ) )
2319, 22eqeq12d 2637 . . 3  |-  ( w  =  B  ->  (
( T `  (
( A R w ) G t ) )  =  ( ( A S ( T `
 w ) ) H ( T `  t ) )  <->  ( T `  ( ( A R B ) G t ) )  =  ( ( A S ( T `  B ) ) H ( T `
 t ) ) ) )
24 oveq2 6658 . . . . 5  |-  ( t  =  C  ->  (
( A R B ) G t )  =  ( ( A R B ) G C ) )
2524fveq2d 6195 . . . 4  |-  ( t  =  C  ->  ( T `  ( ( A R B ) G t ) )  =  ( T `  (
( A R B ) G C ) ) )
26 fveq2 6191 . . . . 5  |-  ( t  =  C  ->  ( T `  t )  =  ( T `  C ) )
2726oveq2d 6666 . . . 4  |-  ( t  =  C  ->  (
( A S ( T `  B ) ) H ( T `
 t ) )  =  ( ( A S ( T `  B ) ) H ( T `  C
) ) )
2825, 27eqeq12d 2637 . . 3  |-  ( t  =  C  ->  (
( T `  (
( A R B ) G t ) )  =  ( ( A S ( T `
 B ) ) H ( T `  t ) )  <->  ( T `  ( ( A R B ) G C ) )  =  ( ( A S ( T `  B ) ) H ( T `
 C ) ) ) )
2916, 23, 28rspc3v 3325 . 2  |-  ( ( A  e.  CC  /\  B  e.  X  /\  C  e.  X )  ->  ( A. u  e.  CC  A. w  e.  X  A. t  e.  X  ( T `  ( ( u R w ) G t ) )  =  ( ( u S ( T `  w ) ) H ( T `
 t ) )  ->  ( T `  ( ( A R B ) G C ) )  =  ( ( A S ( T `  B ) ) H ( T `
 C ) ) ) )
3010, 29mpan9 486 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X  /\  C  e.  X ) )  -> 
( T `  (
( A R B ) G C ) )  =  ( ( A S ( T `
 B ) ) H ( T `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442    LnOp clno 27595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lno 27599
This theorem is referenced by:  lno0  27611  lnocoi  27612  lnoadd  27613  lnosub  27614  lnomul  27615
  Copyright terms: Public domain W3C validator