MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   Unicode version

Theorem lnomul 27615
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1  |-  X  =  ( BaseSet `  U )
lnomul.5  |-  R  =  ( .sOLD `  U )
lnomul.6  |-  S  =  ( .sOLD `  W )
lnomul.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnomul  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  ( A R B ) )  =  ( A S ( T `  B
) ) )

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L ) )
2 simprl 794 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  A  e.  CC )
3 simprr 796 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  B  e.  X )
4 simpl1 1064 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  U  e.  NrmCVec )
5 lnomul.1 . . . . 5  |-  X  =  ( BaseSet `  U )
6 eqid 2622 . . . . 5  |-  ( 0vec `  U )  =  (
0vec `  U )
75, 6nvzcl 27489 . . . 4  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
84, 7syl 17 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( 0vec `  U )  e.  X )
9 eqid 2622 . . . 4  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
10 eqid 2622 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
11 eqid 2622 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
12 lnomul.5 . . . 4  |-  R  =  ( .sOLD `  U )
13 lnomul.6 . . . 4  |-  S  =  ( .sOLD `  W )
14 lnomul.7 . . . 4  |-  L  =  ( U  LnOp  W
)
155, 9, 10, 11, 12, 13, 14lnolin 27609 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X  /\  ( 0vec `  U )  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( T `  ( 0vec `  U ) ) ) )
161, 2, 3, 8, 15syl13anc 1328 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( T `  ( 0vec `  U ) ) ) )
175, 12nvscl 27481 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  ( A R B )  e.  X )
184, 2, 3, 17syl3anc 1326 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( A R B )  e.  X )
195, 10, 6nv0rid 27490 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A R B )  e.  X )  ->  (
( A R B ) ( +v `  U ) ( 0vec `  U ) )  =  ( A R B ) )
204, 18, 19syl2anc 693 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A R B ) ( +v
`  U ) (
0vec `  U )
)  =  ( A R B ) )
2120fveq2d 6195 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( T `  ( A R B ) ) )
22 eqid 2622 . . . . . 6  |-  ( 0vec `  W )  =  (
0vec `  W )
235, 9, 6, 22, 14lno0 27611 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  ( 0vec `  U ) )  =  ( 0vec `  W
) )
2423oveq2d 6666 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  (
( A S ( T `  B ) ) ( +v `  W ) ( T `
 ( 0vec `  U
) ) )  =  ( ( A S ( T `  B
) ) ( +v
`  W ) (
0vec `  W )
) )
2524adantr 481 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) ( T `  ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( 0vec `  W
) ) )
26 simpl2 1065 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  W  e.  NrmCVec )
275, 9, 14lnof 27610 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
2827adantr 481 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  T : X --> ( BaseSet `  W ) )
2928, 3ffvelrnd 6360 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  B
)  e.  ( BaseSet `  W ) )
309, 13nvscl 27481 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  A  e.  CC  /\  ( T `
 B )  e.  ( BaseSet `  W )
)  ->  ( A S ( T `  B ) )  e.  ( BaseSet `  W )
)
3126, 2, 29, 30syl3anc 1326 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( A S ( T `  B ) )  e.  ( BaseSet `  W ) )
329, 11, 22nv0rid 27490 . . . 4  |-  ( ( W  e.  NrmCVec  /\  ( A S ( T `  B ) )  e.  ( BaseSet `  W )
)  ->  ( ( A S ( T `  B ) ) ( +v `  W ) ( 0vec `  W
) )  =  ( A S ( T `
 B ) ) )
3326, 31, 32syl2anc 693 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) (
0vec `  W )
)  =  ( A S ( T `  B ) ) )
3425, 33eqtrd 2656 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) ( T `  ( 0vec `  U ) ) )  =  ( A S ( T `  B
) ) )
3516, 21, 343eqtr3d 2664 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  ( A R B ) )  =  ( A S ( T `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   0veccn0v 27443    LnOp clno 27595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599
This theorem is referenced by:  nmlno0lem  27648  nmblolbii  27654  blocnilem  27659  ubthlem2  27727
  Copyright terms: Public domain W3C validator