MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpcls Structured version   Visualization version   Unicode version

Theorem lpcls 21168
Description: The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
lpcls.1  |-  X  = 
U. J
Assertion
Ref Expression
lpcls  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( limPt `  J
) `  ( ( cls `  J ) `  S ) )  =  ( ( limPt `  J
) `  S )
)

Proof of Theorem lpcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 t1top 21134 . . . . . . 7  |-  ( J  e.  Fre  ->  J  e.  Top )
2 lpcls.1 . . . . . . . . . 10  |-  X  = 
U. J
32clsss3 20863 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
43ssdifssd 3748 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  \  { x } )  C_  X
)
52clsss3 20863 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( ( ( cls `  J ) `  S
)  \  { x } )  C_  X
)  ->  ( ( cls `  J ) `  ( ( ( cls `  J ) `  S
)  \  { x } ) )  C_  X )
64, 5syldan 487 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  C_  X )
71, 6sylan 488 . . . . . 6  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  C_  X )
87sseld 3602 . . . . 5  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  ->  x  e.  X ) )
9 ssdifss 3741 . . . . . . . . . . 11  |-  ( S 
C_  X  ->  ( S  \  { x }
)  C_  X )
102clscld 20851 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( ( cls `  J ) `  ( S  \  { x } ) )  e.  ( Clsd `  J
) )
111, 9, 10syl2an 494 . . . . . . . . . 10  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( cls `  J
) `  ( S  \  { x } ) )  e.  ( Clsd `  J ) )
1211adantr 481 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( ( cls `  J ) `  ( S  \  { x } ) )  e.  ( Clsd `  J
) )
132t1sncld 21130 . . . . . . . . . . . . 13  |-  ( ( J  e.  Fre  /\  x  e.  X )  ->  { x }  e.  ( Clsd `  J )
)
1413adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  { x }  e.  ( Clsd `  J ) )
15 uncld 20845 . . . . . . . . . . . 12  |-  ( ( { x }  e.  ( Clsd `  J )  /\  ( ( cls `  J
) `  ( S  \  { x } ) )  e.  ( Clsd `  J ) )  -> 
( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) )  e.  (
Clsd `  J )
)
1614, 12, 15syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( {
x }  u.  (
( cls `  J
) `  ( S  \  { x } ) ) )  e.  (
Clsd `  J )
)
172sscls 20860 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( S  \  { x } )  C_  X
)  ->  ( S  \  { x } ) 
C_  ( ( cls `  J ) `  ( S  \  { x }
) ) )
181, 9, 17syl2an 494 . . . . . . . . . . . . 13  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( S  \  {
x } )  C_  ( ( cls `  J
) `  ( S  \  { x } ) ) )
19 ssundif 4052 . . . . . . . . . . . . 13  |-  ( S 
C_  ( { x }  u.  ( ( cls `  J ) `  ( S  \  { x } ) ) )  <-> 
( S  \  {
x } )  C_  ( ( cls `  J
) `  ( S  \  { x } ) ) )
2018, 19sylibr 224 . . . . . . . . . . . 12  |-  ( ( J  e.  Fre  /\  S  C_  X )  ->  S  C_  ( { x }  u.  ( ( cls `  J ) `  ( S  \  { x } ) ) ) )
2120adantr 481 . . . . . . . . . . 11  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  S  C_  ( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
222clsss2 20876 . . . . . . . . . . 11  |-  ( ( ( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) )  e.  (
Clsd `  J )  /\  S  C_  ( { x }  u.  (
( cls `  J
) `  ( S  \  { x } ) ) ) )  -> 
( ( cls `  J
) `  S )  C_  ( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
2316, 21, 22syl2anc 693 . . . . . . . . . 10  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( ( cls `  J ) `  S )  C_  ( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
24 ssundif 4052 . . . . . . . . . 10  |-  ( ( ( cls `  J
) `  S )  C_  ( { x }  u.  ( ( cls `  J
) `  ( S  \  { x } ) ) )  <->  ( (
( cls `  J
) `  S )  \  { x } ) 
C_  ( ( cls `  J ) `  ( S  \  { x }
) ) )
2523, 24sylib 208 . . . . . . . . 9  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( (
( cls `  J
) `  S )  \  { x } ) 
C_  ( ( cls `  J ) `  ( S  \  { x }
) ) )
262clsss2 20876 . . . . . . . . 9  |-  ( ( ( ( cls `  J
) `  ( S  \  { x } ) )  e.  ( Clsd `  J )  /\  (
( ( cls `  J
) `  S )  \  { x } ) 
C_  ( ( cls `  J ) `  ( S  \  { x }
) ) )  -> 
( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  C_  ( ( cls `  J ) `  ( S  \  { x } ) ) )
2712, 25, 26syl2anc 693 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( ( cls `  J ) `  ( ( ( cls `  J ) `  S
)  \  { x } ) )  C_  ( ( cls `  J
) `  ( S  \  { x } ) ) )
2827sseld 3602 . . . . . . 7  |-  ( ( ( J  e.  Fre  /\  S  C_  X )  /\  x  e.  X
)  ->  ( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  ->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
2928ex 450 . . . . . 6  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  X  ->  ( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  ->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) ) )
3029com23 86 . . . . 5  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  ->  ( x  e.  X  ->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) ) )
318, 30mpdd 43 . . . 4  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  ->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
321adantr 481 . . . . . 6  |-  ( ( J  e.  Fre  /\  S  C_  X )  ->  J  e.  Top )
331, 3sylan 488 . . . . . . 7  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
3433ssdifssd 3748 . . . . . 6  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  \  { x } )  C_  X
)
352sscls 20860 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
361, 35sylan 488 . . . . . . 7  |-  ( ( J  e.  Fre  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
3736ssdifd 3746 . . . . . 6  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( S  \  {
x } )  C_  ( ( ( cls `  J ) `  S
)  \  { x } ) )
382clsss 20858 . . . . . 6  |-  ( ( J  e.  Top  /\  ( ( ( cls `  J ) `  S
)  \  { x } )  C_  X  /\  ( S  \  {
x } )  C_  ( ( ( cls `  J ) `  S
)  \  { x } ) )  -> 
( ( cls `  J
) `  ( S  \  { x } ) )  C_  ( ( cls `  J ) `  ( ( ( cls `  J ) `  S
)  \  { x } ) ) )
3932, 34, 37, 38syl3anc 1326 . . . . 5  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( cls `  J
) `  ( S  \  { x } ) )  C_  ( ( cls `  J ) `  ( ( ( cls `  J ) `  S
)  \  { x } ) ) )
4039sseld 3602 . . . 4  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  ->  x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) ) ) )
4131, 40impbid 202 . . 3  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) )  <->  x  e.  (
( cls `  J
) `  ( S  \  { x } ) ) ) )
422islp 20944 . . . . 5  |-  ( ( J  e.  Top  /\  ( ( cls `  J
) `  S )  C_  X )  ->  (
x  e.  ( (
limPt `  J ) `  ( ( cls `  J
) `  S )
)  <->  x  e.  (
( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) ) ) )
433, 42syldan 487 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  ( ( cls `  J
) `  S )
)  <->  x  e.  (
( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) ) ) )
441, 43sylan 488 . . 3  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  ( ( cls `  J
) `  S )
)  <->  x  e.  (
( cls `  J
) `  ( (
( cls `  J
) `  S )  \  { x } ) ) ) )
452islp 20944 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  S )  <->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
461, 45sylan 488 . . 3  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  S )  <->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
4741, 44, 463bitr4d 300 . 2  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  ( ( cls `  J
) `  S )
)  <->  x  e.  (
( limPt `  J ) `  S ) ) )
4847eqrdv 2620 1  |-  ( ( J  e.  Fre  /\  S  C_  X )  -> 
( ( limPt `  J
) `  ( ( cls `  J ) `  S ) )  =  ( ( limPt `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822   limPtclp 20938   Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-lp 20940  df-t1 21118
This theorem is referenced by:  perfcls  21169
  Copyright terms: Public domain W3C validator