| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpcls | Structured version Visualization version Unicode version | ||
| Description: The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| lpcls.1 |
|
| Ref | Expression |
|---|---|
| lpcls |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top 21134 |
. . . . . . 7
| |
| 2 | lpcls.1 |
. . . . . . . . . 10
| |
| 3 | 2 | clsss3 20863 |
. . . . . . . . 9
|
| 4 | 3 | ssdifssd 3748 |
. . . . . . . 8
|
| 5 | 2 | clsss3 20863 |
. . . . . . . 8
|
| 6 | 4, 5 | syldan 487 |
. . . . . . 7
|
| 7 | 1, 6 | sylan 488 |
. . . . . 6
|
| 8 | 7 | sseld 3602 |
. . . . 5
|
| 9 | ssdifss 3741 |
. . . . . . . . . . 11
| |
| 10 | 2 | clscld 20851 |
. . . . . . . . . . 11
|
| 11 | 1, 9, 10 | syl2an 494 |
. . . . . . . . . 10
|
| 12 | 11 | adantr 481 |
. . . . . . . . 9
|
| 13 | 2 | t1sncld 21130 |
. . . . . . . . . . . . 13
|
| 14 | 13 | adantlr 751 |
. . . . . . . . . . . 12
|
| 15 | uncld 20845 |
. . . . . . . . . . . 12
| |
| 16 | 14, 12, 15 | syl2anc 693 |
. . . . . . . . . . 11
|
| 17 | 2 | sscls 20860 |
. . . . . . . . . . . . . 14
|
| 18 | 1, 9, 17 | syl2an 494 |
. . . . . . . . . . . . 13
|
| 19 | ssundif 4052 |
. . . . . . . . . . . . 13
| |
| 20 | 18, 19 | sylibr 224 |
. . . . . . . . . . . 12
|
| 21 | 20 | adantr 481 |
. . . . . . . . . . 11
|
| 22 | 2 | clsss2 20876 |
. . . . . . . . . . 11
|
| 23 | 16, 21, 22 | syl2anc 693 |
. . . . . . . . . 10
|
| 24 | ssundif 4052 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | sylib 208 |
. . . . . . . . 9
|
| 26 | 2 | clsss2 20876 |
. . . . . . . . 9
|
| 27 | 12, 25, 26 | syl2anc 693 |
. . . . . . . 8
|
| 28 | 27 | sseld 3602 |
. . . . . . 7
|
| 29 | 28 | ex 450 |
. . . . . 6
|
| 30 | 29 | com23 86 |
. . . . 5
|
| 31 | 8, 30 | mpdd 43 |
. . . 4
|
| 32 | 1 | adantr 481 |
. . . . . 6
|
| 33 | 1, 3 | sylan 488 |
. . . . . . 7
|
| 34 | 33 | ssdifssd 3748 |
. . . . . 6
|
| 35 | 2 | sscls 20860 |
. . . . . . . 8
|
| 36 | 1, 35 | sylan 488 |
. . . . . . 7
|
| 37 | 36 | ssdifd 3746 |
. . . . . 6
|
| 38 | 2 | clsss 20858 |
. . . . . 6
|
| 39 | 32, 34, 37, 38 | syl3anc 1326 |
. . . . 5
|
| 40 | 39 | sseld 3602 |
. . . 4
|
| 41 | 31, 40 | impbid 202 |
. . 3
|
| 42 | 2 | islp 20944 |
. . . . 5
|
| 43 | 3, 42 | syldan 487 |
. . . 4
|
| 44 | 1, 43 | sylan 488 |
. . 3
|
| 45 | 2 | islp 20944 |
. . . 4
|
| 46 | 1, 45 | sylan 488 |
. . 3
|
| 47 | 41, 44, 46 | 3bitr4d 300 |
. 2
|
| 48 | 47 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-cld 20823 df-cls 20825 df-lp 20940 df-t1 21118 |
| This theorem is referenced by: perfcls 21169 |
| Copyright terms: Public domain | W3C validator |