MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnsubn0 Structured version   Visualization version   Unicode version

Theorem lspsnsubn0 19140
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.)
Hypotheses
Ref Expression
lspsnsubn0.v  |-  V  =  ( Base `  W
)
lspsnsubn0.o  |-  .0.  =  ( 0g `  W )
lspsnsubn0.m  |-  .-  =  ( -g `  W )
lspsnsubn0.w  |-  ( ph  ->  W  e.  LMod )
lspsnsubn0.x  |-  ( ph  ->  X  e.  V )
lspsnsubn0.y  |-  ( ph  ->  Y  e.  V )
lspsnsubn0.e  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
Assertion
Ref Expression
lspsnsubn0  |-  ( ph  ->  ( X  .-  Y
)  =/=  .0.  )

Proof of Theorem lspsnsubn0
StepHypRef Expression
1 lspsnsubn0.e . 2  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
2 lspsnsubn0.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
3 lspsnsubn0.x . . . . 5  |-  ( ph  ->  X  e.  V )
4 lspsnsubn0.y . . . . 5  |-  ( ph  ->  Y  e.  V )
5 lspsnsubn0.v . . . . . 6  |-  V  =  ( Base `  W
)
6 lspsnsubn0.o . . . . . 6  |-  .0.  =  ( 0g `  W )
7 lspsnsubn0.m . . . . . 6  |-  .-  =  ( -g `  W )
85, 6, 7lmodsubeq0 18922 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .-  Y
)  =  .0.  <->  X  =  Y ) )
92, 3, 4, 8syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )
10 sneq 4187 . . . . 5  |-  ( X  =  Y  ->  { X }  =  { Y } )
1110fveq2d 6195 . . . 4  |-  ( X  =  Y  ->  ( N `  { X } )  =  ( N `  { Y } ) )
129, 11syl6bi 243 . . 3  |-  ( ph  ->  ( ( X  .-  Y )  =  .0. 
->  ( N `  { X } )  =  ( N `  { Y } ) ) )
1312necon3d 2815 . 2  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  ->  ( X  .-  Y )  =/= 
.0.  ) )
141, 13mpd 15 1  |-  ( ph  ->  ( X  .-  Y
)  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   0gc0g 16100   -gcsg 17424   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-lmod 18865
This theorem is referenced by:  mapdpglem4N  36965
  Copyright terms: Public domain W3C validator