MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsscl Structured version   Visualization version   Unicode version

Theorem lsscl 18943
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f  |-  F  =  (Scalar `  W )
lsscl.b  |-  B  =  ( Base `  F
)
lsscl.p  |-  .+  =  ( +g  `  W )
lsscl.t  |-  .x.  =  ( .s `  W )
lsscl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsscl  |-  ( ( U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )

Proof of Theorem lsscl
Dummy variables  x  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsscl.f . . . 4  |-  F  =  (Scalar `  W )
2 lsscl.b . . . 4  |-  B  =  ( Base `  F
)
3 eqid 2622 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
4 lsscl.p . . . 4  |-  .+  =  ( +g  `  W )
5 lsscl.t . . . 4  |-  .x.  =  ( .s `  W )
6 lsscl.s . . . 4  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islss 18935 . . 3  |-  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  U  =/=  (/) 
/\  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) )
87simp3bi 1078 . 2  |-  ( U  e.  S  ->  A. x  e.  B  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
9 oveq1 6657 . . . . 5  |-  ( x  =  Z  ->  (
x  .x.  a )  =  ( Z  .x.  a ) )
109oveq1d 6665 . . . 4  |-  ( x  =  Z  ->  (
( x  .x.  a
)  .+  b )  =  ( ( Z 
.x.  a )  .+  b ) )
1110eleq1d 2686 . . 3  |-  ( x  =  Z  ->  (
( ( x  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  a )  .+  b )  e.  U
) )
12 oveq2 6658 . . . . 5  |-  ( a  =  X  ->  ( Z  .x.  a )  =  ( Z  .x.  X
) )
1312oveq1d 6665 . . . 4  |-  ( a  =  X  ->  (
( Z  .x.  a
)  .+  b )  =  ( ( Z 
.x.  X )  .+  b ) )
1413eleq1d 2686 . . 3  |-  ( a  =  X  ->  (
( ( Z  .x.  a )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  b )  e.  U
) )
15 oveq2 6658 . . . 4  |-  ( b  =  Y  ->  (
( Z  .x.  X
)  .+  b )  =  ( ( Z 
.x.  X )  .+  Y ) )
1615eleq1d 2686 . . 3  |-  ( b  =  Y  ->  (
( ( Z  .x.  X )  .+  b
)  e.  U  <->  ( ( Z  .x.  X )  .+  Y )  e.  U
) )
1711, 14, 16rspc3v 3325 . 2  |-  ( ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )  ->  ( A. x  e.  B  A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  ->  ( ( Z  .x.  X )  .+  Y
)  e.  U ) )
188, 17mpan9 486 1  |-  ( ( U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U
) )  ->  (
( Z  .x.  X
)  .+  Y )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-lss 18933
This theorem is referenced by:  lssvsubcl  18944  lssvacl  18954  lssvscl  18955  islss3  18959  lssintcl  18964  lspsolvlem  19142  lbsextlem2  19159  isphld  19999
  Copyright terms: Public domain W3C validator