| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnlelln | Structured version Visualization version Unicode version | ||
| Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolnlelln.l |
|
| lvolnlelln.n |
|
| lvolnlelln.v |
|
| Ref | Expression |
|---|---|
| lvolnlelln |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. . 3
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | eqid 2622 |
. . . . 5
| |
| 5 | lvolnlelln.n |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | islln2 34797 |
. . . 4
|
| 7 | 6 | 3ad2ant1 1082 |
. . 3
|
| 8 | 1, 7 | mpbid 222 |
. 2
|
| 9 | simp11 1091 |
. . . . . . 7
| |
| 10 | simp12 1092 |
. . . . . . 7
| |
| 11 | simp2l 1087 |
. . . . . . 7
| |
| 12 | simp2r 1088 |
. . . . . . 7
| |
| 13 | lvolnlelln.l |
. . . . . . . 8
| |
| 14 | lvolnlelln.v |
. . . . . . . 8
| |
| 15 | 13, 3, 4, 14 | lvolnle3at 34868 |
. . . . . . 7
|
| 16 | 9, 10, 11, 11, 12, 15 | syl23anc 1333 |
. . . . . 6
|
| 17 | simp3r 1090 |
. . . . . . . 8
| |
| 18 | 3, 4 | hlatjidm 34655 |
. . . . . . . . . 10
|
| 19 | 9, 11, 18 | syl2anc 693 |
. . . . . . . . 9
|
| 20 | 19 | oveq1d 6665 |
. . . . . . . 8
|
| 21 | 17, 20 | eqtr4d 2659 |
. . . . . . 7
|
| 22 | 21 | breq2d 4665 |
. . . . . 6
|
| 23 | 16, 22 | mtbird 315 |
. . . . 5
|
| 24 | 23 | 3exp 1264 |
. . . 4
|
| 25 | 24 | rexlimdvv 3037 |
. . 3
|
| 26 | 25 | adantld 483 |
. 2
|
| 27 | 8, 26 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 |
| This theorem is referenced by: lvolnelln 34875 |
| Copyright terms: Public domain | W3C validator |