MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem1 Structured version   Visualization version   Unicode version

Theorem mbfi1fseqlem1 23482
Description: Lemma for mbfi1fseq 23488. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
Assertion
Ref Expression
mbfi1fseqlem1  |-  ( ph  ->  J : ( NN 
X.  RR ) --> ( 0 [,) +oo )
)
Distinct variable groups:    y, m, F    m, J    ph, m, y
Allowed substitution hint:    J( y)

Proof of Theorem mbfi1fseqlem1
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . 10  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
2 simpr 477 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  y  e.  RR )  ->  y  e.  RR )
3 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( 0 [,) +oo ) )
41, 2, 3syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  ( 0 [,) +oo ) )
5 elrege0 12278 . . . . . . . . 9  |-  ( ( F `  y )  e.  ( 0 [,) +oo )  <->  ( ( F `
 y )  e.  RR  /\  0  <_ 
( F `  y
) ) )
64, 5sylib 208 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( F `  y )  e.  RR  /\  0  <_  ( F `  y ) ) )
76simpld 475 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  RR )
8 2nn 11185 . . . . . . . . . 10  |-  2  e.  NN
9 nnnn0 11299 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  NN0 )
10 nnexpcl 12873 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
118, 9, 10sylancr 695 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
2 ^ m )  e.  NN )
1211ad2antrl 764 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  NN )
1312nnred 11035 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  RR )
147, 13remulcld 10070 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( F `  y )  x.  (
2 ^ m ) )  e.  RR )
15 reflcl 12597 . . . . . 6  |-  ( ( ( F `  y
)  x.  ( 2 ^ m ) )  e.  RR  ->  ( |_ `  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  e.  RR )
1614, 15syl 17 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  e.  RR )
1716, 12nndivred 11069 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  e.  RR )
1812nnnn0d 11351 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  NN0 )
1918nn0ge0d 11354 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
0  <_  ( 2 ^ m ) )
20 mulge0 10546 . . . . . . . 8  |-  ( ( ( ( F `  y )  e.  RR  /\  0  <_  ( F `  y ) )  /\  ( ( 2 ^ m )  e.  RR  /\  0  <_  ( 2 ^ m ) ) )  ->  0  <_  ( ( F `  y
)  x.  ( 2 ^ m ) ) )
216, 13, 19, 20syl12anc 1324 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
0  <_  ( ( F `  y )  x.  ( 2 ^ m
) ) )
22 flge0nn0 12621 . . . . . . 7  |-  ( ( ( ( F `  y )  x.  (
2 ^ m ) )  e.  RR  /\  0  <_  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  -> 
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  e.  NN0 )
2314, 21, 22syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  e.  NN0 )
2423nn0ge0d 11354 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
0  <_  ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) ) )
2512nngt0d 11064 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
0  <  ( 2 ^ m ) )
26 divge0 10892 . . . . 5  |-  ( ( ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  e.  RR  /\  0  <_  ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) ) )  /\  ( ( 2 ^ m )  e.  RR  /\  0  <  ( 2 ^ m ) ) )  ->  0  <_  ( ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) ) )
2716, 24, 13, 25, 26syl22anc 1327 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
0  <_  ( ( |_ `  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  / 
( 2 ^ m
) ) )
28 elrege0 12278 . . . 4  |-  ( ( ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) )  e.  ( 0 [,) +oo )  <->  ( ( ( |_ `  ( ( F `  y )  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) )  e.  RR  /\  0  <_ 
( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) ) )
2917, 27, 28sylanbrc 698 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  e.  ( 0 [,) +oo ) )
3029ralrimivva 2971 . 2  |-  ( ph  ->  A. m  e.  NN  A. y  e.  RR  (
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) )  e.  ( 0 [,) +oo ) )
31 mbfi1fseq.3 . . 3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
3231fmpt2 7237 . 2  |-  ( A. m  e.  NN  A. y  e.  RR  ( ( |_
`  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  / 
( 2 ^ m
) )  e.  ( 0 [,) +oo )  <->  J : ( NN  X.  RR ) --> ( 0 [,) +oo ) )
3330, 32sylib 208 1  |-  ( ph  ->  J : ( NN 
X.  RR ) --> ( 0 [,) +oo )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   [,)cico 12177   |_cfl 12591   ^cexp 12860  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  mbfi1fseqlem5  23486
  Copyright terms: Public domain W3C validator