MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Visualization version   Unicode version

Theorem mbfi1fseqlem6 23487
Description: Lemma for mbfi1fseq 23488. Verify that  G converges pointwise to  F, and wrap up the existence quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem6  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, m, n, x, y, F    g, G, n, x    m, J    ph, m, n, x, y
Allowed substitution hints:    ph( g)    G( y, m)    J( x, y, g, n)

Proof of Theorem mbfi1fseqlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3  |-  ( ph  ->  F  e. MblFn )
2 mbfi1fseq.2 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
3 mbfi1fseq.3 . . 3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
4 mbfi1fseq.4 . . 3  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
51, 2, 3, 4mbfi1fseqlem4 23485 . 2  |-  ( ph  ->  G : NN --> dom  S.1 )
61, 2, 3, 4mbfi1fseqlem5 23486 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0p  oR  <_ 
( G `  n
)  /\  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
76ralrimiva 2966 . 2  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) )
8 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
98recnd 10068 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
109abscld 14175 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  x )  e.  RR )
112ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
12 elrege0 12278 . . . . . . . 8  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1311, 12sylib 208 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1413simpld 475 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1510, 14readdcld 10069 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
16 arch 11289 . . . . 5  |-  ( ( ( abs `  x
)  +  ( F `
 x ) )  e.  RR  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
1715, 16syl 17 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
18 eqid 2622 . . . . 5  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
19 nnz 11399 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
2019ad2antrl 764 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  ZZ )
21 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
22 1zzd 11408 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  1  e.  ZZ )
23 halfcn 11247 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2423a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( 1  /  2 )  e.  CC )
25 halfre 11246 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
26 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
27 halfgt0 11248 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  2
)
2826, 25, 27ltleii 10160 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  2
)
29 absid 14036 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
3025, 28, 29mp2an 708 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
31 halflt1 11250 . . . . . . . . . . 11  |-  ( 1  /  2 )  <  1
3230, 31eqbrtri 4674 . . . . . . . . . 10  |-  ( abs `  ( 1  /  2
) )  <  1
3332a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  ( 1  /  2
) )  <  1
)
3424, 33expcnv 14596 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  ~~>  0 )
3514recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
36 nnex 11026 . . . . . . . . . 10  |-  NN  e.  _V
3736mptex 6486 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V
3837a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V )
39 nnnn0 11299 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  NN0 )
4039adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  j  e.  NN0 )
41 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
j ) )
42 eqid 2622 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
43 ovex 6678 . . . . . . . . . . 11  |-  ( ( 1  /  2 ) ^ j )  e. 
_V
4441, 42, 43fvmpt 6282 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
4540, 44syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  =  ( ( 1  /  2 ) ^ j ) )
46 expcl 12878 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  CC )
4723, 40, 46sylancr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( 1  /  2
) ^ j )  e.  CC )
4845, 47eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  e.  CC )
4941oveq2d 6666 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( F `  x
)  -  ( ( 1  /  2 ) ^ n ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
50 eqid 2622 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  =  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )
51 ovex 6678 . . . . . . . . . . 11  |-  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) )  e. 
_V
5249, 50, 51fvmpt 6282 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5352adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5445oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( F `  x
)  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
5553, 54eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) ) )
5621, 22, 34, 35, 38, 48, 55climsubc2 14369 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( ( F `  x )  -  0 ) )
5735subid1d 10381 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  -  0 )  =  ( F `  x
) )
5856, 57breqtrd 4679 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( F `  x
) )
5958adantr 481 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )  ~~>  ( F `
 x ) )
6036mptex 6486 . . . . . 6  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  e.  _V
6160a1i 11 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  e. 
_V )
62 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  NN )
63 eluznn 11758 . . . . . . . 8  |-  ( ( k  e.  NN  /\  j  e.  ( ZZ>= `  k ) )  -> 
j  e.  NN )
6462, 63sylan 488 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN )
6564, 52syl 17 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  =  ( ( F `  x )  -  (
( 1  /  2
) ^ j ) ) )
6614ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  RR )
6764, 39syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN0 )
68 reexpcl 12877 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  RR )
6925, 67, 68sylancr 695 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  e.  RR )
7066, 69resubcld 10458 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  e.  RR )
7165, 70eqeltrd 2701 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  e.  RR )
72 fveq2 6191 . . . . . . . . 9  |-  ( n  =  j  ->  ( G `  n )  =  ( G `  j ) )
7372fveq1d 6193 . . . . . . . 8  |-  ( n  =  j  ->  (
( G `  n
) `  x )  =  ( ( G `
 j ) `  x ) )
74 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )
75 fvex 6201 . . . . . . . 8  |-  ( ( G `  j ) `
 x )  e. 
_V
7673, 74, 75fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n ) `  x
) ) `  j
)  =  ( ( G `  j ) `
 x ) )
7764, 76syl 17 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( G `  j ) `  x
) )
785ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  G : NN --> dom  S.1 )
7978, 64ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  e.  dom  S.1 )
80 i1ff 23443 . . . . . . . 8  |-  ( ( G `  j )  e.  dom  S.1  ->  ( G `  j ) : RR --> RR )
8179, 80syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j ) : RR --> RR )
828ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  RR )
8381, 82ffvelrnd 6360 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  e.  RR )
8477, 83eqeltrd 2701 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  e.  RR )
8535ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  CC )
86 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
87 nnexpcl 12873 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
8886, 67, 87sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  NN )
8988nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  RR )
9089recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  CC )
9188nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  =/=  0
)
9285, 90, 91divcan4d 10807 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  / 
( 2 ^ j
) )  =  ( F `  x ) )
9392eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  =  ( ( ( F `  x )  x.  (
2 ^ j ) )  /  ( 2 ^ j ) ) )
94 2cnd 11093 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  e.  CC )
95 2ne0 11113 . . . . . . . . . . 11  |-  2  =/=  0
9695a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  =/=  0
)
97 eluzelz 11697 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  k
)  ->  j  e.  ZZ )
9897adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  ZZ )
9994, 96, 98exprecd 13016 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  =  ( 1  /  ( 2 ^ j ) ) )
10093, 99oveq12d 6668 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
10166, 89remulcld 10070 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  RR )
102101recnd 10068 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  CC )
103 1cnd 10056 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  CC )
104102, 103, 90, 91divsubdird 10840 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
105100, 104eqtr4d 2659 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  /  ( 2 ^ j ) ) )
106 fllep1 12602 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( F `  x
)  x.  ( 2 ^ j ) )  <_  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  +  1 ) )
107101, 106syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) )
108 1red 10055 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  RR )
109 reflcl 12597 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  e.  RR )
110101, 109syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  e.  RR )
111101, 108, 110lesubaddd 10624 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) ) )
112107, 111mpbird 247 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
113 peano2rem 10348 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( ( F `  x )  x.  (
2 ^ j ) )  -  1 )  e.  RR )
114101, 113syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  e.  RR )
11588nngt0d 11064 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <  (
2 ^ j ) )
116 lediv1 10888 . . . . . . . . 9  |-  ( ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  e.  RR  /\  ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
117114, 110, 89, 115, 116syl112anc 1330 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
118112, 117mpbid 222 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
119105, 118eqbrtrd 4675 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
1201, 2, 3, 4mbfi1fseqlem2 23483 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) ) )
12164, 120syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) )
122121fveq1d 6193 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x ) )
123 ovex 6678 . . . . . . . . . . 11  |-  ( j J x )  e. 
_V
124 vex 3203 . . . . . . . . . . 11  |-  j  e. 
_V
125123, 124ifex 4156 . . . . . . . . . 10  |-  if ( ( j J x )  <_  j , 
( j J x ) ,  j )  e.  _V
126 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
127125, 126ifex 4156 . . . . . . . . 9  |-  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 )  e.  _V
128 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) )
129128fvmpt2 6291 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 )  e. 
_V )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13082, 127, 129sylancl 694 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) ) `  x
)  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )
13177, 122, 1303eqtrd 2660 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13210ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  e.  RR )
13315ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
13464nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  RR )
13511ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  ( 0 [,) +oo )
)
136135, 12sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
137136simprd 479 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( F `  x )
)
138132, 66addge01d 10615 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) ) )
139137, 138mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) )
14062adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
141140nnred 11035 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
142 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <  k )
143133, 141, 142ltled 10185 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  k )
144 eluzle 11700 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  k
)  ->  k  <_  j )
145144adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  <_  j
)
146133, 141, 134, 143, 145letrd 10194 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  j )
147132, 133, 134, 139, 146letrd 10194 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  j )
14882, 134absled 14169 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  <_  j  <->  (
-u j  <_  x  /\  x  <_  j ) ) )
149147, 148mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( -u j  <_  x  /\  x  <_ 
j ) )
150149simpld 475 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  <_  x
)
151149simprd 479 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  <_  j
)
152134renegcld 10457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  e.  RR )
153 elicc2 12238 . . . . . . . . . 10  |-  ( (
-u j  e.  RR  /\  j  e.  RR )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
154152, 134, 153syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
15582, 150, 151, 154mpbir3and 1245 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  (
-u j [,] j
) )
156155iftrued 4094 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
157 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  y  =  x )
158157fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
159 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  m  =  j )
160159oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ j ) )
161158, 160oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ j ) ) )
162161fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( m  =  j  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
163162, 160oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
164 ovex 6678 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  e. 
_V
165163, 3, 164ovmpt2a 6791 . . . . . . . . . . 11  |-  ( ( j  e.  NN  /\  x  e.  RR )  ->  ( j J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
16664, 82, 165syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  =  ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
167110, 88nndivred 11069 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  e.  RR )
168 flle 12600 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ j ) ) )
169101, 168syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) )
170 ledivmul2 10902 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  e.  RR  /\  ( F `  x )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
171110, 66, 89, 115, 170syl112anc 1330 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
172169, 171mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  ( F `  x )
)
1739ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  CC )
174173absge0d 14183 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( abs `  x ) )
17566, 132addge02d 10616 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( abs `  x
)  <->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) ) )
176174, 175mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) )
17766, 133, 134, 176, 146letrd 10194 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  j
)
178167, 66, 134, 172, 177letrd 10194 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  j
)
179166, 178eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  <_  j
)
180179iftrued 4094 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
181180, 166eqtrd 2656 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
182131, 156, 1813eqtrd 2660 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
183119, 65, 1823brtr4d 4685 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  <_ 
( ( n  e.  NN  |->  ( ( G `
 n ) `  x ) ) `  j ) )
184182, 172eqbrtrd 4675 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  <_ 
( F `  x
) )
18518, 20, 59, 61, 71, 84, 183, 184climsqz 14371 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )
18617, 185rexlimddv 3035 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  ~~>  ( F `  x
) )
187186ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `  n ) `  x
) )  ~~>  ( F `
 x ) )
18836mptex 6486 . . . 4  |-  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  ( -u m [,] m ) ,  if ( ( m J x )  <_  m ,  ( m J x ) ,  m ) ,  0 ) ) )  e. 
_V
1894, 188eqeltri 2697 . . 3  |-  G  e. 
_V
190 feq1 6026 . . . 4  |-  ( g  =  G  ->  (
g : NN --> dom  S.1  <->  G : NN --> dom  S.1 ) )
191 fveq1 6190 . . . . . . 7  |-  ( g  =  G  ->  (
g `  n )  =  ( G `  n ) )
192191breq2d 4665 . . . . . 6  |-  ( g  =  G  ->  (
0p  oR  <_  ( g `  n )  <->  0p  oR  <_  ( G `
 n ) ) )
193 fveq1 6190 . . . . . . 7  |-  ( g  =  G  ->  (
g `  ( n  +  1 ) )  =  ( G `  ( n  +  1
) ) )
194191, 193breq12d 4666 . . . . . 6  |-  ( g  =  G  ->  (
( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) )  <->  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
195192, 194anbi12d 747 . . . . 5  |-  ( g  =  G  ->  (
( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <-> 
( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
196195ralbidv 2986 . . . 4  |-  ( g  =  G  ->  ( A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
197191fveq1d 6193 . . . . . . 7  |-  ( g  =  G  ->  (
( g `  n
) `  x )  =  ( ( G `
 n ) `  x ) )
198197mpteq2dv 4745 . . . . . 6  |-  ( g  =  G  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) )
199198breq1d 4663 . . . . 5  |-  ( g  =  G  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
200199ralbidv 2986 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
201190, 196, 2003anbi123d 1399 . . 3  |-  ( g  =  G  ->  (
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
g `  n )  /\  ( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) )  <->  ( G : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
202189, 201spcev 3300 . 2  |-  ( ( G : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
2035, 7, 187, 202syl3anc 1326 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oRcofr 6896   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   [,]cicc 12178   |_cfl 12591   ^cexp 12860   abscabs 13974    ~~> cli 14215  MblFncmbf 23383   S.1citg1 23384   0pc0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-0p 23437
This theorem is referenced by:  mbfi1fseq  23488
  Copyright terms: Public domain W3C validator