Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measval Structured version   Visualization version   Unicode version

Theorem measval 30261
Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
measval  |-  ( S  e.  U. ran sigAlgebra  ->  (measures `  S )  =  {
m  |  ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
Distinct variable groups:    x, m, y    S, m, x
Allowed substitution hint:    S( y)

Proof of Theorem measval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) )  ->  m : S --> ( 0 [,] +oo ) )
21ss2abi 3674 . . 3  |-  { m  |  ( m : S --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  C_  { m  |  m : S --> ( 0 [,] +oo ) }
3 ovex 6678 . . . 4  |-  ( 0 [,] +oo )  e. 
_V
4 mapex 7863 . . . 4  |-  ( ( S  e.  U. ran sigAlgebra  /\  ( 0 [,] +oo )  e.  _V )  ->  { m  |  m : S --> ( 0 [,] +oo ) }  e.  _V )
53, 4mpan2 707 . . 3  |-  ( S  e.  U. ran sigAlgebra  ->  { m  |  m : S --> ( 0 [,] +oo ) }  e.  _V )
6 ssexg 4804 . . 3  |-  ( ( { m  |  ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  C_  { m  |  m : S --> ( 0 [,] +oo ) }  /\  { m  |  m : S --> ( 0 [,] +oo ) }  e.  _V )  ->  { m  |  (
m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  e.  _V )
72, 5, 6sylancr 695 . 2  |-  ( S  e.  U. ran sigAlgebra  ->  { m  |  ( m : S --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  e.  _V )
8 feq2 6027 . . . . 5  |-  ( s  =  S  ->  (
m : s --> ( 0 [,] +oo )  <->  m : S --> ( 0 [,] +oo ) ) )
9 pweq 4161 . . . . . 6  |-  ( s  =  S  ->  ~P s  =  ~P S
)
109raleqdv 3144 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  (
m `  U. x )  = Σ* y  e.  x ( m `  y ) )  <->  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  (
m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) )
118, 103anbi13d 1401 . . . 4  |-  ( s  =  S  ->  (
( m : s --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\ 
A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  (
m `  U. x )  = Σ* y  e.  x ( m `  y ) ) )  <->  ( m : S --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) ) )
1211abbidv 2741 . . 3  |-  ( s  =  S  ->  { m  |  ( m : s --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  =  { m  |  ( m : S --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
13 df-meas 30259 . . 3  |- measures  =  ( s  e.  U. ran sigAlgebra  |->  { m  |  ( m : s --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
1412, 13fvmptg 6280 . 2  |-  ( ( S  e.  U. ran sigAlgebra  /\  { m  |  ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  e.  _V )  ->  (measures `  S )  =  { m  |  ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
157, 14mpdan 702 1  |-  ( S  e.  U. ran sigAlgebra  ->  (measures `  S )  =  {
m  |  ( m : S --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  Σ*cesum 30089  sigAlgebracsiga 30170  measurescmeas 30258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-meas 30259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator