MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   Unicode version

Theorem mapex 7863
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 6060 . . . 4  |-  ( f : A --> B  -> 
f  C_  ( A  X.  B ) )
21ss2abi 3674 . . 3  |-  { f  |  f : A --> B }  C_  { f  |  f  C_  ( A  X.  B ) }
3 df-pw 4160 . . 3  |-  ~P ( A  X.  B )  =  { f  |  f 
C_  ( A  X.  B ) }
42, 3sseqtr4i 3638 . 2  |-  { f  |  f : A --> B }  C_  ~P ( A  X.  B )
5 xpexg 6960 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
6 pwexg 4850 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
75, 6syl 17 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( A  X.  B )  e.  _V )
8 ssexg 4804 . 2  |-  ( ( { f  |  f : A --> B }  C_ 
~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  { f  |  f : A --> B }  e.  _V )
94, 7, 8sylancr 695 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    X. cxp 5112   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  fnmap  7864  mapvalg  7867  isghm  17660  wksfval  26505  measbase  30260  measval  30261  ismeas  30262  isrnmeas  30263  cnfex  39187  opabresexd  41306  upwlksfval  41716
  Copyright terms: Public domain W3C validator