MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmfmhm Structured version   Visualization version   Unicode version

Theorem mhmfmhm 17538
Description: The function fulfilling the conditions of mhmmnd 17537 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmgrp.x  |-  X  =  ( Base `  G
)
ghmgrp.y  |-  Y  =  ( Base `  H
)
ghmgrp.p  |-  .+  =  ( +g  `  G )
ghmgrp.q  |-  .+^  =  ( +g  `  H )
ghmgrp.1  |-  ( ph  ->  F : X -onto-> Y
)
mhmmnd.3  |-  ( ph  ->  G  e.  Mnd )
Assertion
Ref Expression
mhmfmhm  |-  ( ph  ->  F  e.  ( G MndHom  H ) )
Distinct variable groups:    x, F, y    x, G, y    x,  .+ , y    x, H, y   
x, X, y    x, Y, y    x,  .+^ , y    ph, x, y

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . . 3  |-  ( ph  ->  G  e.  Mnd )
2 ghmgrp.f . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
3 ghmgrp.x . . . 4  |-  X  =  ( Base `  G
)
4 ghmgrp.y . . . 4  |-  Y  =  ( Base `  H
)
5 ghmgrp.p . . . 4  |-  .+  =  ( +g  `  G )
6 ghmgrp.q . . . 4  |-  .+^  =  ( +g  `  H )
7 ghmgrp.1 . . . 4  |-  ( ph  ->  F : X -onto-> Y
)
82, 3, 4, 5, 6, 7, 1mhmmnd 17537 . . 3  |-  ( ph  ->  H  e.  Mnd )
9 fof 6115 . . . . 5  |-  ( F : X -onto-> Y  ->  F : X --> Y )
107, 9syl 17 . . . 4  |-  ( ph  ->  F : X --> Y )
1123expb 1266 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
1211ralrimivva 2971 . . . 4  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) ) )
13 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
142, 3, 4, 5, 6, 7, 1, 13mhmid 17536 . . . 4  |-  ( ph  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H ) )
1510, 12, 143jca 1242 . . 3  |-  ( ph  ->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  /\  ( F `  ( 0g
`  G ) )  =  ( 0g `  H ) ) )
161, 8, 15jca31 557 . 2  |-  ( ph  ->  ( ( G  e. 
Mnd  /\  H  e.  Mnd )  /\  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  G ) )  =  ( 0g
`  H ) ) ) )
17 eqid 2622 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
183, 4, 5, 6, 13, 17ismhm 17337 . 2  |-  ( F  e.  ( G MndHom  H
)  <->  ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  ( 0g `  G ) )  =  ( 0g
`  H ) ) ) )
1916, 18sylibr 224 1  |-  ( ph  ->  F  e.  ( G MndHom  H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   MndHom cmhm 17333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator