MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   Unicode version

Theorem moni 16396
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
ismon.x  |-  ( ph  ->  X  e.  B )
ismon.y  |-  ( ph  ->  Y  e.  B )
moni.z  |-  ( ph  ->  Z  e.  B )
moni.f  |-  ( ph  ->  F  e.  ( X M Y ) )
moni.g  |-  ( ph  ->  G  e.  ( Z H X ) )
moni.k  |-  ( ph  ->  K  e.  ( Z H X ) )
Assertion
Ref Expression
moni  |-  ( ph  ->  ( ( F (
<. Z ,  X >.  .x. 
Y ) G )  =  ( F (
<. Z ,  X >.  .x. 
Y ) K )  <-> 
G  =  K ) )

Proof of Theorem moni
Dummy variables  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5  |-  ( ph  ->  F  e.  ( X M Y ) )
2 ismon.b . . . . . 6  |-  B  =  ( Base `  C
)
3 ismon.h . . . . . 6  |-  H  =  ( Hom  `  C
)
4 ismon.o . . . . . 6  |-  .x.  =  (comp `  C )
5 ismon.s . . . . . 6  |-  M  =  (Mono `  C )
6 ismon.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
7 ismon.x . . . . . 6  |-  ( ph  ->  X  e.  B )
8 ismon.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
92, 3, 4, 5, 6, 7, 8ismon2 16394 . . . . 5  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) ) )
101, 9mpbid 222 . . . 4  |-  ( ph  ->  ( F  e.  ( X H Y )  /\  A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h ) ) )
1110simprd 479 . . 3  |-  ( ph  ->  A. z  e.  B  A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h ) )
12 moni.z . . . 4  |-  ( ph  ->  Z  e.  B )
13 moni.g . . . . . . 7  |-  ( ph  ->  G  e.  ( Z H X ) )
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  z  =  Z )  ->  G  e.  ( Z H X ) )
15 simpr 477 . . . . . . 7  |-  ( (
ph  /\  z  =  Z )  ->  z  =  Z )
1615oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  z  =  Z )  ->  (
z H X )  =  ( Z H X ) )
1714, 16eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  z  =  Z )  ->  G  e.  ( z H X ) )
18 moni.k . . . . . . . . 9  |-  ( ph  ->  K  e.  ( Z H X ) )
1918adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  =  Z )  ->  K  e.  ( Z H X ) )
2019, 16eleqtrrd 2704 . . . . . . 7  |-  ( (
ph  /\  z  =  Z )  ->  K  e.  ( z H X ) )
2120adantr 481 . . . . . 6  |-  ( ( ( ph  /\  z  =  Z )  /\  g  =  G )  ->  K  e.  ( z H X ) )
22 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  z  =  Z )
2322opeq1d 4408 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  <. z ,  X >.  =  <. Z ,  X >. )
2423oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  ( <. z ,  X >.  .x. 
Y )  =  (
<. Z ,  X >.  .x. 
Y ) )
25 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  F  =  F )
26 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  g  =  G )
2724, 25, 26oveq123d 6671 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. Z ,  X >.  .x.  Y ) G ) )
28 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  h  =  K )
2924, 25, 28oveq123d 6671 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  ( F ( <. z ,  X >.  .x.  Y ) h )  =  ( F ( <. Z ,  X >.  .x.  Y ) K ) )
3027, 29eqeq12d 2637 . . . . . . 7  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  (
( F ( <.
z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  <-> 
( F ( <. Z ,  X >.  .x. 
Y ) G )  =  ( F (
<. Z ,  X >.  .x. 
Y ) K ) ) )
3126, 28eqeq12d 2637 . . . . . . 7  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  (
g  =  h  <->  G  =  K ) )
3230, 31imbi12d 334 . . . . . 6  |-  ( ( ( ( ph  /\  z  =  Z )  /\  g  =  G
)  /\  h  =  K )  ->  (
( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h )  <->  ( ( F ( <. Z ,  X >.  .x.  Y ) G )  =  ( F ( <. Z ,  X >.  .x.  Y ) K )  ->  G  =  K ) ) )
3321, 32rspcdv 3312 . . . . 5  |-  ( ( ( ph  /\  z  =  Z )  /\  g  =  G )  ->  ( A. h  e.  (
z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h )  ->  ( ( F ( <. Z ,  X >.  .x.  Y ) G )  =  ( F ( <. Z ,  X >.  .x.  Y ) K )  ->  G  =  K ) ) )
3417, 33rspcimdv 3310 . . . 4  |-  ( (
ph  /\  z  =  Z )  ->  ( A. g  e.  (
z H X ) A. h  e.  ( z H X ) ( ( F (
<. z ,  X >.  .x. 
Y ) g )  =  ( F (
<. z ,  X >.  .x. 
Y ) h )  ->  g  =  h )  ->  ( ( F ( <. Z ,  X >.  .x.  Y ) G )  =  ( F ( <. Z ,  X >.  .x.  Y ) K )  ->  G  =  K ) ) )
3512, 34rspcimdv 3310 . . 3  |-  ( ph  ->  ( A. z  e.  B  A. g  e.  ( z H X ) A. h  e.  ( z H X ) ( ( F ( <. z ,  X >.  .x.  Y ) g )  =  ( F ( <. z ,  X >.  .x.  Y ) h )  ->  g  =  h )  ->  (
( F ( <. Z ,  X >.  .x. 
Y ) G )  =  ( F (
<. Z ,  X >.  .x. 
Y ) K )  ->  G  =  K ) ) )
3611, 35mpd 15 . 2  |-  ( ph  ->  ( ( F (
<. Z ,  X >.  .x. 
Y ) G )  =  ( F (
<. Z ,  X >.  .x. 
Y ) K )  ->  G  =  K ) )
37 oveq2 6658 . 2  |-  ( G  =  K  ->  ( F ( <. Z ,  X >.  .x.  Y ) G )  =  ( F ( <. Z ,  X >.  .x.  Y ) K ) )
3836, 37impbid1 215 1  |-  ( ph  ->  ( ( F (
<. Z ,  X >.  .x. 
Y ) G )  =  ( F (
<. Z ,  X >.  .x. 
Y ) K )  <-> 
G  =  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325  Monocmon 16388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-mon 16390
This theorem is referenced by:  epii  16403  monsect  16443  fthmon  16587  setcmon  16737
  Copyright terms: Public domain W3C validator