MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monsect Structured version   Visualization version   Unicode version

Theorem monsect 16443
Description: If  F is a monomorphism and  G is a section of  F, then  G is an inverse of  F and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b  |-  B  =  ( Base `  C
)
sectmon.m  |-  M  =  (Mono `  C )
sectmon.s  |-  S  =  (Sect `  C )
sectmon.c  |-  ( ph  ->  C  e.  Cat )
sectmon.x  |-  ( ph  ->  X  e.  B )
sectmon.y  |-  ( ph  ->  Y  e.  B )
monsect.n  |-  N  =  (Inv `  C )
monsect.1  |-  ( ph  ->  F  e.  ( X M Y ) )
monsect.2  |-  ( ph  ->  G ( Y S X ) F )
Assertion
Ref Expression
monsect  |-  ( ph  ->  F ( X N Y ) G )

Proof of Theorem monsect
StepHypRef Expression
1 monsect.2 . . . . . . . 8  |-  ( ph  ->  G ( Y S X ) F )
2 sectmon.b . . . . . . . . 9  |-  B  =  ( Base `  C
)
3 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
4 eqid 2622 . . . . . . . . 9  |-  (comp `  C )  =  (comp `  C )
5 eqid 2622 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
6 sectmon.s . . . . . . . . 9  |-  S  =  (Sect `  C )
7 sectmon.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
8 sectmon.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  B )
9 sectmon.x . . . . . . . . 9  |-  ( ph  ->  X  e.  B )
102, 3, 4, 5, 6, 7, 8, 9issect 16413 . . . . . . . 8  |-  ( ph  ->  ( G ( Y S X ) F  <-> 
( G  e.  ( Y ( Hom  `  C
) X )  /\  F  e.  ( X
( Hom  `  C ) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) G )  =  ( ( Id `  C ) `
 Y ) ) ) )
111, 10mpbid 222 . . . . . . 7  |-  ( ph  ->  ( G  e.  ( Y ( Hom  `  C
) X )  /\  F  e.  ( X
( Hom  `  C ) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) G )  =  ( ( Id `  C ) `
 Y ) ) )
1211simp3d 1075 . . . . . 6  |-  ( ph  ->  ( F ( <. Y ,  X >. (comp `  C ) Y ) G )  =  ( ( Id `  C
) `  Y )
)
1312oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( F (
<. Y ,  X >. (comp `  C ) Y ) G ) ( <. X ,  Y >. (comp `  C ) Y ) F )  =  ( ( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) F ) )
1411simp2d 1074 . . . . . 6  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
1511simp1d 1073 . . . . . 6  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) X ) )
162, 3, 4, 7, 9, 8, 9, 14, 15, 8, 14catass 16347 . . . . 5  |-  ( ph  ->  ( ( F (
<. Y ,  X >. (comp `  C ) Y ) G ) ( <. X ,  Y >. (comp `  C ) Y ) F )  =  ( F ( <. X ,  X >. (comp `  C
) Y ) ( G ( <. X ,  Y >. (comp `  C
) X ) F ) ) )
172, 3, 5, 7, 9, 4, 8, 14catlid 16344 . . . . . 6  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) F )  =  F )
182, 3, 5, 7, 9, 4, 8, 14catrid 16345 . . . . . 6  |-  ( ph  ->  ( F ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) )  =  F )
1917, 18eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) F )  =  ( F ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) )
2013, 16, 193eqtr3d 2664 . . . 4  |-  ( ph  ->  ( F ( <. X ,  X >. (comp `  C ) Y ) ( G ( <. X ,  Y >. (comp `  C ) X ) F ) )  =  ( F ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) ) )
21 sectmon.m . . . . 5  |-  M  =  (Mono `  C )
22 monsect.1 . . . . 5  |-  ( ph  ->  F  e.  ( X M Y ) )
232, 3, 4, 7, 9, 8, 9, 14, 15catcocl 16346 . . . . 5  |-  ( ph  ->  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  e.  ( X ( Hom  `  C
) X ) )
242, 3, 5, 7, 9catidcl 16343 . . . . 5  |-  ( ph  ->  ( ( Id `  C ) `  X
)  e.  ( X ( Hom  `  C
) X ) )
252, 3, 4, 21, 7, 9, 8, 9, 22, 23, 24moni 16396 . . . 4  |-  ( ph  ->  ( ( F (
<. X ,  X >. (comp `  C ) Y ) ( G ( <. X ,  Y >. (comp `  C ) X ) F ) )  =  ( F ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) )  <->  ( G
( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) ) )
2620, 25mpbid 222 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
272, 3, 4, 5, 6, 7, 9, 8, 14, 15issect2 16414 . . 3  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
) )
2826, 27mpbird 247 . 2  |-  ( ph  ->  F ( X S Y ) G )
29 monsect.n . . 3  |-  N  =  (Inv `  C )
302, 29, 7, 9, 8, 6isinv 16420 . 2  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X S Y ) G  /\  G ( Y S X ) F ) ) )
3128, 1, 30mpbir2and 957 1  |-  ( ph  ->  F ( X N Y ) G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Monocmon 16388  Sectcsect 16404  Invcinv 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-mon 16390  df-sect 16407  df-inv 16408
This theorem is referenced by:  episect  16445
  Copyright terms: Public domain W3C validator