MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   Unicode version

Theorem d1mat2pmat 20544
Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t  |-  T  =  ( N matToPolyMat  R )
d1mat2pmat.b  |-  B  =  ( Base `  ( N Mat  R ) )
d1mat2pmat.p  |-  P  =  (Poly1 `  R )
d1mat2pmat.s  |-  S  =  (algSc `  P )
Assertion
Ref Expression
d1mat2pmat  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  ( T `  M )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } )

Proof of Theorem d1mat2pmat
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8038 . . . . . 6  |-  { A }  e.  Fin
2 eleq1 2689 . . . . . 6  |-  ( N  =  { A }  ->  ( N  e.  Fin  <->  { A }  e.  Fin ) )
31, 2mpbiri 248 . . . . 5  |-  ( N  =  { A }  ->  N  e.  Fin )
43adantr 481 . . . 4  |-  ( ( N  =  { A }  /\  A  e.  V
)  ->  N  e.  Fin )
543ad2ant2 1083 . . 3  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  N  e.  Fin )
6 simp1 1061 . . 3  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  R  e.  V )
7 simp3 1063 . . 3  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  M  e.  B )
8 d1mat2pmat.t . . . 4  |-  T  =  ( N matToPolyMat  R )
9 eqid 2622 . . . 4  |-  ( N Mat 
R )  =  ( N Mat  R )
10 d1mat2pmat.b . . . 4  |-  B  =  ( Base `  ( N Mat  R ) )
11 d1mat2pmat.p . . . 4  |-  P  =  (Poly1 `  R )
12 d1mat2pmat.s . . . 4  |-  S  =  (algSc `  P )
138, 9, 10, 11, 12mat2pmatval 20529 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  ( T `  M
)  =  ( i  e.  N ,  j  e.  N  |->  ( S `
 ( i M j ) ) ) )
145, 6, 7, 13syl3anc 1326 . 2  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  ( T `  M )  =  ( i  e.  N ,  j  e.  N  |->  ( S `  ( i M j ) ) ) )
15 id 22 . . . . . . 7  |-  ( A  e.  V  ->  A  e.  V )
16 fvexd 6203 . . . . . . 7  |-  ( A  e.  V  ->  ( S `  ( A M A ) )  e. 
_V )
1715, 15, 163jca 1242 . . . . . 6  |-  ( A  e.  V  ->  ( A  e.  V  /\  A  e.  V  /\  ( S `  ( A M A ) )  e.  _V ) )
1817adantl 482 . . . . 5  |-  ( ( N  =  { A }  /\  A  e.  V
)  ->  ( A  e.  V  /\  A  e.  V  /\  ( S `
 ( A M A ) )  e. 
_V ) )
19183ad2ant2 1083 . . . 4  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  ( A  e.  V  /\  A  e.  V  /\  ( S `  ( A M A ) )  e.  _V ) )
20 eqid 2622 . . . . 5  |-  ( i  e.  { A } ,  j  e.  { A }  |->  ( S `  ( i M j ) ) )  =  ( i  e.  { A } ,  j  e. 
{ A }  |->  ( S `  ( i M j ) ) )
21 oveq1 6657 . . . . . 6  |-  ( i  =  A  ->  (
i M j )  =  ( A M j ) )
2221fveq2d 6195 . . . . 5  |-  ( i  =  A  ->  ( S `  ( i M j ) )  =  ( S `  ( A M j ) ) )
23 oveq2 6658 . . . . . 6  |-  ( j  =  A  ->  ( A M j )  =  ( A M A ) )
2423fveq2d 6195 . . . . 5  |-  ( j  =  A  ->  ( S `  ( A M j ) )  =  ( S `  ( A M A ) ) )
2520, 22, 24mpt2sn 7268 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V  /\  ( S `  ( A M A ) )  e.  _V )  -> 
( i  e.  { A } ,  j  e. 
{ A }  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) )
>. } )
2619, 25syl 17 . . 3  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  (
i  e.  { A } ,  j  e.  { A }  |->  ( S `
 ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `
 ( A M A ) ) >. } )
27 mpt2eq12 6715 . . . . . . 7  |-  ( ( N  =  { A }  /\  N  =  { A } )  ->  (
i  e.  N , 
j  e.  N  |->  ( S `  ( i M j ) ) )  =  ( i  e.  { A } ,  j  e.  { A }  |->  ( S `  ( i M j ) ) ) )
2827eqeq1d 2624 . . . . . 6  |-  ( ( N  =  { A }  /\  N  =  { A } )  ->  (
( i  e.  N ,  j  e.  N  |->  ( S `  (
i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. }  <->  ( i  e.  { A } , 
j  e.  { A }  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } ) )
2928anidms 677 . . . . 5  |-  ( N  =  { A }  ->  ( ( i  e.  N ,  j  e.  N  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. }  <->  ( i  e.  { A } , 
j  e.  { A }  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } ) )
3029adantr 481 . . . 4  |-  ( ( N  =  { A }  /\  A  e.  V
)  ->  ( (
i  e.  N , 
j  e.  N  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) )
>. }  <->  ( i  e. 
{ A } , 
j  e.  { A }  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } ) )
31303ad2ant2 1083 . . 3  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  (
( i  e.  N ,  j  e.  N  |->  ( S `  (
i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. }  <->  ( i  e.  { A } , 
j  e.  { A }  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } ) )
3226, 31mpbird 247 . 2  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  (
i  e.  N , 
j  e.  N  |->  ( S `  ( i M j ) ) )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) )
>. } )
3314, 32eqtrd 2656 1  |-  ( ( R  e.  V  /\  ( N  =  { A }  /\  A  e.  V )  /\  M  e.  B )  ->  ( T `  M )  =  { <. <. A ,  A >. ,  ( S `  ( A M A ) ) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857  algSccascl 19311  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-en 7956  df-fin 7959  df-mat2pmat 20512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator