| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptelee | Structured version Visualization version Unicode version | ||
| Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.) |
| Ref | Expression |
|---|---|
| mptelee |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elee 25774 |
. 2
| |
| 2 | ovex 6678 |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | 2, 3 | fnmpti 6022 |
. . . 4
|
| 5 | df-f 5892 |
. . . 4
| |
| 6 | 4, 5 | mpbiran 953 |
. . 3
|
| 7 | 3 | rnmpt 5371 |
. . . . 5
|
| 8 | 7 | sseq1i 3629 |
. . . 4
|
| 9 | abss 3671 |
. . . . 5
| |
| 10 | nfre1 3005 |
. . . . . . . . 9
| |
| 11 | nfv 1843 |
. . . . . . . . 9
| |
| 12 | 10, 11 | nfim 1825 |
. . . . . . . 8
|
| 13 | 12 | nfal 2153 |
. . . . . . 7
|
| 14 | r19.23v 3023 |
. . . . . . . . 9
| |
| 15 | 14 | albii 1747 |
. . . . . . . 8
|
| 16 | ralcom4 3224 |
. . . . . . . . 9
| |
| 17 | rsp 2929 |
. . . . . . . . . 10
| |
| 18 | 2 | clel2 3339 |
. . . . . . . . . 10
|
| 19 | 17, 18 | syl6ibr 242 |
. . . . . . . . 9
|
| 20 | 16, 19 | sylbir 225 |
. . . . . . . 8
|
| 21 | 15, 20 | sylbir 225 |
. . . . . . 7
|
| 22 | 13, 21 | ralrimi 2957 |
. . . . . 6
|
| 23 | nfra1 2941 |
. . . . . . . 8
| |
| 24 | rsp 2929 |
. . . . . . . . 9
| |
| 25 | eleq1a 2696 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl6 35 |
. . . . . . . 8
|
| 27 | 23, 11, 26 | rexlimd 3026 |
. . . . . . 7
|
| 28 | 27 | alrimiv 1855 |
. . . . . 6
|
| 29 | 22, 28 | impbii 199 |
. . . . 5
|
| 30 | 9, 29 | bitri 264 |
. . . 4
|
| 31 | 8, 30 | bitri 264 |
. . 3
|
| 32 | 6, 31 | bitri 264 |
. 2
|
| 33 | 1, 32 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ee 25771 |
| This theorem is referenced by: eleesub 25791 eleesubd 25792 axsegconlem1 25797 axsegconlem8 25804 axpasch 25821 axeuclidlem 25842 axcontlem2 25845 |
| Copyright terms: Public domain | W3C validator |