MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   Unicode version

Theorem wlkson 26552
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wlkson  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A (WalksOn `  G
) B )  =  { <. f ,  p >.  |  ( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  B ) } )
Distinct variable groups:    A, f, p    B, f, p    f, G, p    f, V, p

Proof of Theorem wlkson
Dummy variables  a 
b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5  |-  V  =  (Vtx `  G )
211vgrex 25882 . . . 4  |-  ( A  e.  V  ->  G  e.  _V )
32adantr 481 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  G  e.  _V )
4 simpl 473 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  V )
54, 1syl6eleq 2711 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  (Vtx `  G ) )
6 simpr 477 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V )  ->  B  e.  V )
76, 1syl6eleq 2711 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  B  e.  (Vtx `  G ) )
8 wksv 26515 . . . 4  |-  { <. f ,  p >.  |  f (Walks `  G )
p }  e.  _V
98a1i 11 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  { <. f ,  p >.  |  f (Walks `  G ) p }  e.  _V )
10 simpr 477 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  f (Walks `  G ) p )  ->  f (Walks `  G ) p )
11 eqeq2 2633 . . . 4  |-  ( a  =  A  ->  (
( p `  0
)  =  a  <->  ( p `  0 )  =  A ) )
12 eqeq2 2633 . . . 4  |-  ( b  =  B  ->  (
( p `  ( # `
 f ) )  =  b  <->  ( p `  ( # `  f
) )  =  B ) )
1311, 12bi2anan9 917 . . 3  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( ( p `
 0 )  =  a  /\  ( p `
 ( # `  f
) )  =  b )  <->  ( ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  B ) ) )
14 biidd 252 . . 3  |-  ( g  =  G  ->  (
( ( p ` 
0 )  =  a  /\  ( p `  ( # `  f ) )  =  b )  <-> 
( ( p ` 
0 )  =  a  /\  ( p `  ( # `  f ) )  =  b ) ) )
15 df-wlkson 26496 . . . 4  |- WalksOn  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b ) } ) )
16 eqid 2622 . . . . . 6  |-  (Vtx `  g )  =  (Vtx
`  g )
17 3anass 1042 . . . . . . . 8  |-  ( ( f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b )  <->  ( f (Walks `  g ) p  /\  ( ( p ` 
0 )  =  a  /\  ( p `  ( # `  f ) )  =  b ) ) )
18 ancom 466 . . . . . . . 8  |-  ( ( f (Walks `  g
) p  /\  (
( p `  0
)  =  a  /\  ( p `  ( # `
 f ) )  =  b ) )  <-> 
( ( ( p `
 0 )  =  a  /\  ( p `
 ( # `  f
) )  =  b )  /\  f (Walks `  g ) p ) )
1917, 18bitri 264 . . . . . . 7  |-  ( ( f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b )  <->  ( ( ( p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b )  /\  f (Walks `  g ) p ) )
2019opabbii 4717 . . . . . 6  |-  { <. f ,  p >.  |  ( f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b ) }  =  { <. f ,  p >.  |  ( ( ( p `
 0 )  =  a  /\  ( p `
 ( # `  f
) )  =  b )  /\  f (Walks `  g ) p ) }
2116, 16, 20mpt2eq123i 6718 . . . . 5  |-  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f (Walks `  g ) p  /\  ( p `  0
)  =  a  /\  ( p `  ( # `
 f ) )  =  b ) } )  =  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( ( ( p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b )  /\  f (Walks `  g ) p ) } )
2221mpteq2i 4741 . . . 4  |-  ( g  e.  _V  |->  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f (Walks `  g ) p  /\  ( p `  0
)  =  a  /\  ( p `  ( # `
 f ) )  =  b ) } ) )  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
( ( p ` 
0 )  =  a  /\  ( p `  ( # `  f ) )  =  b )  /\  f (Walks `  g ) p ) } ) )
2315, 22eqtri 2644 . . 3  |- WalksOn  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
( ( p ` 
0 )  =  a  /\  ( p `  ( # `  f ) )  =  b )  /\  f (Walks `  g ) p ) } ) )
243, 5, 7, 9, 10, 13, 14, 23mptmpt2opabbrd 7248 . 2  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A (WalksOn `  G
) B )  =  { <. f ,  p >.  |  ( ( ( p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  B )  /\  f (Walks `  G ) p ) } )
25 ancom 466 . . . 4  |-  ( ( ( ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  B )  /\  f (Walks `  G ) p )  <-> 
( f (Walks `  G ) p  /\  ( ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  B ) ) )
26 3anass 1042 . . . 4  |-  ( ( f (Walks `  G
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  B )  <->  ( f (Walks `  G ) p  /\  ( ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  B ) ) )
2725, 26bitr4i 267 . . 3  |-  ( ( ( ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  B )  /\  f (Walks `  G ) p )  <-> 
( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  B ) )
2827opabbii 4717 . 2  |-  { <. f ,  p >.  |  ( ( ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  B )  /\  f (Walks `  G ) p ) }  =  { <. f ,  p >.  |  ( f (Walks `  G
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  B ) }
2924, 28syl6eq 2672 1  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A (WalksOn `  G
) B )  =  { <. f ,  p >.  |  ( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  B ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  iswlkon  26553  wlkonprop  26554
  Copyright terms: Public domain W3C validator