MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksonproplem Structured version   Visualization version   Unicode version

Theorem wksonproplem 26601
Description: Lemma for theorems for properties of walks between two vertices, e.g. trlsonprop 26604. (Contributed by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
wksonproplem.v  |-  V  =  (Vtx `  G )
wksonproplem.b  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( A ( W `
 G ) B ) P  <->  ( F
( A ( O `
 G ) B ) P  /\  F
( Q `  G
) P ) ) )
wksonproplem.d  |-  W  =  ( g  e.  _V  |->  ( a  e.  (Vtx
`  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a ( O `  g ) b ) p  /\  f ( Q `  g ) p ) } ) )
wksonproplem.w  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  f ( Q `  G ) p )  ->  f (Walks `  G ) p )
Assertion
Ref Expression
wksonproplem  |-  ( F ( A ( W `
 G ) B ) P  ->  (
( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F ( A ( O `  G
) B ) P  /\  F ( Q `
 G ) P ) ) )
Distinct variable groups:    A, a,
b, f, g, p    B, a, b, f, g, p    G, a, b, f, g, p    O, a, b, g    Q, a, b, g    V, a, b, f, g, p
Allowed substitution hints:    P( f, g, p, a, b)    Q( f, p)    F( f, g, p, a, b)    O( f, p)    W( f, g, p, a, b)

Proof of Theorem wksonproplem
StepHypRef Expression
1 wksonproplem.v . . . . . 6  |-  V  =  (Vtx `  G )
2 fvex 6201 . . . . . 6  |-  (Vtx `  G )  e.  _V
31, 2eqeltri 2697 . . . . 5  |-  V  e. 
_V
4 wksonproplem.d . . . . . 6  |-  W  =  ( g  e.  _V  |->  ( a  e.  (Vtx
`  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a ( O `  g ) b ) p  /\  f ( Q `  g ) p ) } ) )
5 simp1 1061 . . . . . . 7  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  G  e.  _V )
6 simp2 1062 . . . . . . . 8  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  A  e.  V )
76, 1syl6eleq 2711 . . . . . . 7  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  A  e.  (Vtx `  G ) )
8 simp3 1063 . . . . . . . 8  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  B  e.  V )
98, 1syl6eleq 2711 . . . . . . 7  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  B  e.  (Vtx `  G ) )
10 wksv 26515 . . . . . . . 8  |-  { <. f ,  p >.  |  f (Walks `  G )
p }  e.  _V
1110a1i 11 . . . . . . 7  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  { <. f ,  p >.  |  f (Walks `  G ) p }  e.  _V )
12 wksonproplem.w . . . . . . 7  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  f ( Q `  G ) p )  ->  f (Walks `  G ) p )
135, 7, 9, 11, 12, 4mptmpt2opabovd 7249 . . . . . 6  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  ( A ( W `
 G ) B )  =  { <. f ,  p >.  |  ( f ( A ( O `  G ) B ) p  /\  f ( Q `  G ) p ) } )
14 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
1514, 1syl6eqr 2674 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
16 fveq2 6191 . . . . . . . . 9  |-  ( g  =  G  ->  ( O `  g )  =  ( O `  G ) )
1716oveqd 6667 . . . . . . . 8  |-  ( g  =  G  ->  (
a ( O `  g ) b )  =  ( a ( O `  G ) b ) )
1817breqd 4664 . . . . . . 7  |-  ( g  =  G  ->  (
f ( a ( O `  g ) b ) p  <->  f (
a ( O `  G ) b ) p ) )
19 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  ( Q `  g )  =  ( Q `  G ) )
2019breqd 4664 . . . . . . 7  |-  ( g  =  G  ->  (
f ( Q `  g ) p  <->  f ( Q `  G )
p ) )
2118, 20anbi12d 747 . . . . . 6  |-  ( g  =  G  ->  (
( f ( a ( O `  g
) b ) p  /\  f ( Q `
 g ) p )  <->  ( f ( a ( O `  G ) b ) p  /\  f ( Q `  G ) p ) ) )
224, 13, 15, 15, 21bropfvvvv 7257 . . . . 5  |-  ( ( V  e.  _V  /\  V  e.  _V )  ->  ( F ( A ( W `  G
) B ) P  ->  ( G  e. 
_V  /\  ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) ) )
233, 3, 22mp2an 708 . . . 4  |-  ( F ( A ( W `
 G ) B ) P  ->  ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
24 3anass 1042 . . . . . 6  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  <->  ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V
) ) )
2524anbi1i 731 . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  <->  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) )
26 df-3an 1039 . . . . 5  |-  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  <->  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) )
2725, 26bitr4i 267 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  <->  ( G  e. 
_V  /\  ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
2823, 27sylibr 224 . . 3  |-  ( F ( A ( W `
 G ) B ) P  ->  (
( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
29 wksonproplem.b . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( A ( W `
 G ) B ) P  <->  ( F
( A ( O `
 G ) B ) P  /\  F
( Q `  G
) P ) ) )
3029biimpd 219 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( A ( W `
 G ) B ) P  ->  ( F ( A ( O `  G ) B ) P  /\  F ( Q `  G ) P ) ) )
3130imdistani 726 . . 3  |-  ( ( ( ( G  e. 
_V  /\  A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  /\  F ( A ( W `  G ) B ) P )  ->  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( F
( A ( O `
 G ) B ) P  /\  F
( Q `  G
) P ) ) )
3228, 31mpancom 703 . 2  |-  ( F ( A ( W `
 G ) B ) P  ->  (
( ( G  e. 
_V  /\  A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  /\  ( F ( A ( O `  G ) B ) P  /\  F ( Q `  G ) P ) ) )
33 df-3an 1039 . 2  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F ( A ( O `  G
) B ) P  /\  F ( Q `
 G ) P ) )  <->  ( (
( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( F
( A ( O `
 G ) B ) P  /\  F
( Q `  G
) P ) ) )
3432, 33sylibr 224 1  |-  ( F ( A ( W `
 G ) B ) P  ->  (
( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F ( A ( O `  G
) B ) P  /\  F ( Q `
 G ) P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  Vtxcvtx 25874  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  trlsonprop  26604  pthsonprop  26640  spthonprop  26641
  Copyright terms: Public domain W3C validator