MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppd Structured version   Visualization version   Unicode version

Theorem mptsuppd 7318
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f  |-  F  =  ( x  e.  A  |->  B )
mptsuppdifd.a  |-  ( ph  ->  A  e.  V )
mptsuppdifd.z  |-  ( ph  ->  Z  e.  W )
mptsuppd.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  U )
Assertion
Ref Expression
mptsuppd  |-  ( ph  ->  ( F supp  Z )  =  { x  e.  A  |  B  =/= 
Z } )
Distinct variable groups:    x, A    x, Z    ph, x
Allowed substitution hints:    B( x)    U( x)    F( x)    V( x)    W( x)

Proof of Theorem mptsuppd
StepHypRef Expression
1 mptsuppdifd.f . . 3  |-  F  =  ( x  e.  A  |->  B )
2 mptsuppdifd.a . . 3  |-  ( ph  ->  A  e.  V )
3 mptsuppdifd.z . . 3  |-  ( ph  ->  Z  e.  W )
41, 2, 3mptsuppdifd 7317 . 2  |-  ( ph  ->  ( F supp  Z )  =  { x  e.  A  |  B  e.  ( _V  \  { Z } ) } )
5 mptsuppd.b . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  U )
6 elex 3212 . . . . . 6  |-  ( B  e.  U  ->  B  e.  _V )
75, 6syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  _V )
87biantrurd 529 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =/=  Z  <->  ( B  e.  _V  /\  B  =/= 
Z ) ) )
9 eldifsn 4317 . . . 4  |-  ( B  e.  ( _V  \  { Z } )  <->  ( B  e.  _V  /\  B  =/= 
Z ) )
108, 9syl6rbbr 279 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  e.  ( _V  \  { Z } )  <-> 
B  =/=  Z ) )
1110rabbidva 3188 . 2  |-  ( ph  ->  { x  e.  A  |  B  e.  ( _V  \  { Z }
) }  =  {
x  e.  A  |  B  =/=  Z } )
124, 11eqtrd 2656 1  |-  ( ph  ->  ( F supp  Z )  =  { x  e.  A  |  B  =/= 
Z } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177    |-> cmpt 4729  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  rmsupp0  42149  domnmsuppn0  42150  rmsuppss  42151  suppmptcfin  42160  lcoc0  42211  linc1  42214
  Copyright terms: Public domain W3C validator