Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   Unicode version

Theorem lcoc0 42211
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b  |-  B  =  ( Base `  M
)
lincvalsc0.s  |-  S  =  (Scalar `  M )
lincvalsc0.0  |-  .0.  =  ( 0g `  S )
lincvalsc0.z  |-  Z  =  ( 0g `  M
)
lincvalsc0.f  |-  F  =  ( x  e.  V  |->  .0.  )
lcoc0.r  |-  R  =  ( Base `  S
)
Assertion
Ref Expression
lcoc0  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F  e.  ( R  ^m  V )  /\  F finSupp  .0.  /\  ( F ( linC  `  M ) V )  =  Z ) )
Distinct variable groups:    x, B    x, M    x, V    x,  .0.    x, F    x, R
Allowed substitution hints:    S( x)    Z( x)

Proof of Theorem lcoc0
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6  |-  S  =  (Scalar `  M )
2 lcoc0.r . . . . . 6  |-  R  =  ( Base `  S
)
3 lincvalsc0.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
41, 2, 3lmod0cl 18889 . . . . 5  |-  ( M  e.  LMod  ->  .0.  e.  R )
54ad2antrr 762 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  x  e.  V )  ->  .0.  e.  R )
6 lincvalsc0.f . . . 4  |-  F  =  ( x  e.  V  |->  .0.  )
75, 6fmptd 6385 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F : V --> R )
8 fvex 6201 . . . . . 6  |-  ( Base `  S )  e.  _V
92, 8eqeltri 2697 . . . . 5  |-  R  e. 
_V
109a1i 11 . . . 4  |-  ( M  e.  LMod  ->  R  e. 
_V )
11 elmapg 7870 . . . 4  |-  ( ( R  e.  _V  /\  V  e.  ~P B
)  ->  ( F  e.  ( R  ^m  V
)  <->  F : V --> R ) )
1210, 11sylan 488 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F  e.  ( R  ^m  V )  <-> 
F : V --> R ) )
137, 12mpbird 247 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F  e.  ( R  ^m  V ) )
14 eqidd 2623 . . . . . . 7  |-  ( x  =  v  ->  .0.  =  .0.  )
1514cbvmptv 4750 . . . . . 6  |-  ( x  e.  V  |->  .0.  )  =  ( v  e.  V  |->  .0.  )
166, 15eqtri 2644 . . . . 5  |-  F  =  ( v  e.  V  |->  .0.  )
17 simpr 477 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  V  e.  ~P B
)
18 fvex 6201 . . . . . . 7  |-  ( 0g
`  S )  e. 
_V
193, 18eqeltri 2697 . . . . . 6  |-  .0.  e.  _V
2019a1i 11 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  .0.  e.  _V )
2119a1i 11 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  .0.  e.  _V )
2216, 17, 20, 21mptsuppd 7318 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F supp  .0.  )  =  { v  e.  V  |  .0.  =/=  .0.  }
)
23 neirr 2803 . . . . . . . 8  |-  -.  .0.  =/=  .0.
2423a1i 11 . . . . . . 7  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  -.  .0.  =/=  .0.  )
2524ralrimivw 2967 . . . . . 6  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  A. v  e.  V  -.  .0.  =/=  .0.  )
26 rabeq0 3957 . . . . . 6  |-  ( { v  e.  V  |  .0.  =/=  .0.  }  =  (/)  <->  A. v  e.  V  -.  .0.  =/=  .0.  )
2725, 26sylibr 224 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  { v  e.  V  |  .0.  =/=  .0.  }  =  (/) )
28 0fin 8188 . . . . . 6  |-  (/)  e.  Fin
2928a1i 11 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  (/) 
e.  Fin )
3027, 29eqeltrd 2701 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  { v  e.  V  |  .0.  =/=  .0.  }  e.  Fin )
3122, 30eqeltrd 2701 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F supp  .0.  )  e.  Fin )
326funmpt2 5927 . . . . 5  |-  Fun  F
3332a1i 11 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  Fun  F )
34 funisfsupp 8280 . . . 4  |-  ( ( Fun  F  /\  F  e.  ( R  ^m  V
)  /\  .0.  e.  _V )  ->  ( F finSupp  .0. 
<->  ( F supp  .0.  )  e.  Fin ) )
3533, 13, 20, 34syl3anc 1326 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F finSupp  .0.  <->  ( F supp  .0.  )  e.  Fin )
)
3631, 35mpbird 247 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F finSupp  .0.  )
37 lincvalsc0.b . . 3  |-  B  =  ( Base `  M
)
38 lincvalsc0.z . . 3  |-  Z  =  ( 0g `  M
)
3937, 1, 3, 38, 6lincvalsc0 42210 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  Z )
4013, 36, 393jca 1242 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F  e.  ( R  ^m  V )  /\  F finSupp  .0.  /\  ( F ( linC  `  M ) V )  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-seq 12802  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  lcoel0  42217
  Copyright terms: Public domain W3C validator