Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsuppss Structured version   Visualization version   Unicode version

Theorem rmsuppss 42151
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r  |-  R  =  ( Base `  M
)
Assertion
Ref Expression
rmsuppss  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  ( ( v  e.  V  |->  ( C ( .r `  M
) ( A `  v ) ) ) supp  ( 0g `  M
) )  C_  ( A supp  ( 0g `  M
) ) )
Distinct variable groups:    v, A    v, C    v, M    v, R    v, X    v, V

Proof of Theorem rmsuppss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( ( A `  w )  =  ( 0g `  M )  ->  ( C ( .r `  M ) ( A `
 w ) )  =  ( C ( .r `  M ) ( 0g `  M
) ) )
2 simpll1 1100 . . . . . . . 8  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  M  e.  Ring )
3 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  C  e.  R )
4 rmsuppss.r . . . . . . . . 9  |-  R  =  ( Base `  M
)
5 eqid 2622 . . . . . . . . 9  |-  ( .r
`  M )  =  ( .r `  M
)
6 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
74, 5, 6ringrz 18588 . . . . . . . 8  |-  ( ( M  e.  Ring  /\  C  e.  R )  ->  ( C ( .r `  M ) ( 0g
`  M ) )  =  ( 0g `  M ) )
82, 3, 7syl2anc 693 . . . . . . 7  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  ( C ( .r `  M ) ( 0g
`  M ) )  =  ( 0g `  M ) )
91, 8sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V
) )  /\  w  e.  V )  /\  ( A `  w )  =  ( 0g `  M ) )  -> 
( C ( .r
`  M ) ( A `  w ) )  =  ( 0g
`  M ) )
109ex 450 . . . . 5  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  (
( A `  w
)  =  ( 0g
`  M )  -> 
( C ( .r
`  M ) ( A `  w ) )  =  ( 0g
`  M ) ) )
1110necon3d 2815 . . . 4  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  (
( C ( .r
`  M ) ( A `  w ) )  =/=  ( 0g
`  M )  -> 
( A `  w
)  =/=  ( 0g
`  M ) ) )
1211ss2rabdv 3683 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  { w  e.  V  |  ( C ( .r `  M
) ( A `  w ) )  =/=  ( 0g `  M
) }  C_  { w  e.  V  |  ( A `  w )  =/=  ( 0g `  M
) } )
13 elmapi 7879 . . . . . 6  |-  ( A  e.  ( R  ^m  V )  ->  A : V --> R )
14 fdm 6051 . . . . . 6  |-  ( A : V --> R  ->  dom  A  =  V )
1513, 14syl 17 . . . . 5  |-  ( A  e.  ( R  ^m  V )  ->  dom  A  =  V )
1615adantl 482 . . . 4  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  dom  A  =  V )
17 rabeq 3192 . . . 4  |-  ( dom 
A  =  V  ->  { w  e.  dom  A  |  ( A `  w )  =/=  ( 0g `  M ) }  =  { w  e.  V  |  ( A `
 w )  =/=  ( 0g `  M
) } )
1816, 17syl 17 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  { w  e. 
dom  A  |  ( A `  w )  =/=  ( 0g `  M
) }  =  {
w  e.  V  | 
( A `  w
)  =/=  ( 0g
`  M ) } )
1912, 18sseqtr4d 3642 . 2  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  { w  e.  V  |  ( C ( .r `  M
) ( A `  w ) )  =/=  ( 0g `  M
) }  C_  { w  e.  dom  A  |  ( A `  w )  =/=  ( 0g `  M ) } )
20 fveq2 6191 . . . . 5  |-  ( v  =  w  ->  ( A `  v )  =  ( A `  w ) )
2120oveq2d 6666 . . . 4  |-  ( v  =  w  ->  ( C ( .r `  M ) ( A `
 v ) )  =  ( C ( .r `  M ) ( A `  w
) ) )
2221cbvmptv 4750 . . 3  |-  ( v  e.  V  |->  ( C ( .r `  M
) ( A `  v ) ) )  =  ( w  e.  V  |->  ( C ( .r `  M ) ( A `  w
) ) )
23 simpl2 1065 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  V  e.  X
)
24 fvexd 6203 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  ( 0g `  M )  e.  _V )
25 ovexd 6680 . . 3  |-  ( ( ( ( M  e. 
Ring  /\  V  e.  X  /\  C  e.  R
)  /\  A  e.  ( R  ^m  V ) )  /\  w  e.  V )  ->  ( C ( .r `  M ) ( A `
 w ) )  e.  _V )
2622, 23, 24, 25mptsuppd 7318 . 2  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  ( ( v  e.  V  |->  ( C ( .r `  M
) ( A `  v ) ) ) supp  ( 0g `  M
) )  =  {
w  e.  V  | 
( C ( .r
`  M ) ( A `  w ) )  =/=  ( 0g
`  M ) } )
27 elmapfun 7881 . . . 4  |-  ( A  e.  ( R  ^m  V )  ->  Fun  A )
2827adantl 482 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  Fun  A )
29 simpr 477 . . 3  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  A  e.  ( R  ^m  V ) )
30 suppval1 7301 . . 3  |-  ( ( Fun  A  /\  A  e.  ( R  ^m  V
)  /\  ( 0g `  M )  e.  _V )  ->  ( A supp  ( 0g `  M ) )  =  { w  e. 
dom  A  |  ( A `  w )  =/=  ( 0g `  M
) } )
3128, 29, 24, 30syl3anc 1326 . 2  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  ( A supp  ( 0g `  M ) )  =  { w  e. 
dom  A  |  ( A `  w )  =/=  ( 0g `  M
) } )
3219, 26, 313sstr4d 3648 1  |-  ( ( ( M  e.  Ring  /\  V  e.  X  /\  C  e.  R )  /\  A  e.  ( R  ^m  V ) )  ->  ( ( v  e.  V  |->  ( C ( .r `  M
) ( A `  v ) ) ) supp  ( 0g `  M
) )  C_  ( A supp  ( 0g `  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549
This theorem is referenced by:  rmsuppfi  42154
  Copyright terms: Public domain W3C validator