| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > extmptsuppeq | Structured version Visualization version Unicode version | ||
| Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| extmptsuppeq.b |
|
| extmptsuppeq.a |
|
| extmptsuppeq.z |
|
| Ref | Expression |
|---|---|
| extmptsuppeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extmptsuppeq.a |
. . . . . . . . 9
| |
| 2 | 1 | adantl 482 |
. . . . . . . 8
|
| 3 | 2 | sseld 3602 |
. . . . . . 7
|
| 4 | 3 | anim1d 588 |
. . . . . 6
|
| 5 | eldif 3584 |
. . . . . . . . . . . . 13
| |
| 6 | extmptsuppeq.z |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | adantll 750 |
. . . . . . . . . . . . 13
|
| 8 | 5, 7 | sylan2br 493 |
. . . . . . . . . . . 12
|
| 9 | 8 | expr 643 |
. . . . . . . . . . 11
|
| 10 | elsn2g 4210 |
. . . . . . . . . . . . 13
| |
| 11 | elndif 3734 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | syl6bir 244 |
. . . . . . . . . . . 12
|
| 13 | 12 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syld 47 |
. . . . . . . . . 10
|
| 15 | 14 | con4d 114 |
. . . . . . . . 9
|
| 16 | 15 | impr 649 |
. . . . . . . 8
|
| 17 | simprr 796 |
. . . . . . . 8
| |
| 18 | 16, 17 | jca 554 |
. . . . . . 7
|
| 19 | 18 | ex 450 |
. . . . . 6
|
| 20 | 4, 19 | impbid 202 |
. . . . 5
|
| 21 | 20 | rabbidva2 3186 |
. . . 4
|
| 22 | eqid 2622 |
. . . . 5
| |
| 23 | extmptsuppeq.b |
. . . . . . 7
| |
| 24 | 23, 1 | ssexd 4805 |
. . . . . 6
|
| 25 | 24 | adantl 482 |
. . . . 5
|
| 26 | simpl 473 |
. . . . 5
| |
| 27 | 22, 25, 26 | mptsuppdifd 7317 |
. . . 4
|
| 28 | eqid 2622 |
. . . . 5
| |
| 29 | 23 | adantl 482 |
. . . . 5
|
| 30 | 28, 29, 26 | mptsuppdifd 7317 |
. . . 4
|
| 31 | 21, 27, 30 | 3eqtr4d 2666 |
. . 3
|
| 32 | 31 | ex 450 |
. 2
|
| 33 | simpr 477 |
. . . . . 6
| |
| 34 | 33 | con3i 150 |
. . . . 5
|
| 35 | supp0prc 7298 |
. . . . 5
| |
| 36 | 34, 35 | syl 17 |
. . . 4
|
| 37 | simpr 477 |
. . . . . 6
| |
| 38 | 37 | con3i 150 |
. . . . 5
|
| 39 | supp0prc 7298 |
. . . . 5
| |
| 40 | 38, 39 | syl 17 |
. . . 4
|
| 41 | 36, 40 | eqtr4d 2659 |
. . 3
|
| 42 | 41 | a1d 25 |
. 2
|
| 43 | 32, 42 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
| This theorem is referenced by: cantnfrescl 8573 cantnfres 8574 |
| Copyright terms: Public domain | W3C validator |