MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extmptsuppeq Structured version   Visualization version   Unicode version

Theorem extmptsuppeq 7319
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
extmptsuppeq.b  |-  ( ph  ->  B  e.  W )
extmptsuppeq.a  |-  ( ph  ->  A  C_  B )
extmptsuppeq.z  |-  ( (
ph  /\  n  e.  ( B  \  A ) )  ->  X  =  Z )
Assertion
Ref Expression
extmptsuppeq  |-  ( ph  ->  ( ( n  e.  A  |->  X ) supp  Z
)  =  ( ( n  e.  B  |->  X ) supp  Z ) )
Distinct variable groups:    A, n    B, n    n, Z    ph, n
Allowed substitution hints:    W( n)    X( n)

Proof of Theorem extmptsuppeq
StepHypRef Expression
1 extmptsuppeq.a . . . . . . . . 9  |-  ( ph  ->  A  C_  B )
21adantl 482 . . . . . . . 8  |-  ( ( Z  e.  _V  /\  ph )  ->  A  C_  B
)
32sseld 3602 . . . . . . 7  |-  ( ( Z  e.  _V  /\  ph )  ->  ( n  e.  A  ->  n  e.  B ) )
43anim1d 588 . . . . . 6  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) )  ->  ( n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) ) )
5 eldif 3584 . . . . . . . . . . . . 13  |-  ( n  e.  ( B  \  A )  <->  ( n  e.  B  /\  -.  n  e.  A ) )
6 extmptsuppeq.z . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( B  \  A ) )  ->  X  =  Z )
76adantll 750 . . . . . . . . . . . . 13  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  ( B  \  A
) )  ->  X  =  Z )
85, 7sylan2br 493 . . . . . . . . . . . 12  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  -.  n  e.  A
) )  ->  X  =  Z )
98expr 643 . . . . . . . . . . 11  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( -.  n  e.  A  ->  X  =  Z ) )
10 elsn2g 4210 . . . . . . . . . . . . 13  |-  ( Z  e.  _V  ->  ( X  e.  { Z } 
<->  X  =  Z ) )
11 elndif 3734 . . . . . . . . . . . . 13  |-  ( X  e.  { Z }  ->  -.  X  e.  ( _V  \  { Z } ) )
1210, 11syl6bir 244 . . . . . . . . . . . 12  |-  ( Z  e.  _V  ->  ( X  =  Z  ->  -.  X  e.  ( _V 
\  { Z }
) ) )
1312ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( X  =  Z  ->  -.  X  e.  ( _V 
\  { Z }
) ) )
149, 13syld 47 . . . . . . . . . 10  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( -.  n  e.  A  ->  -.  X  e.  ( _V  \  { Z } ) ) )
1514con4d 114 . . . . . . . . 9  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  n  e.  B )  ->  ( X  e.  ( _V  \  { Z } )  ->  n  e.  A
) )
1615impr 649 . . . . . . . 8  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  n  e.  A )
17 simprr 796 . . . . . . . 8  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  X  e.  ( _V  \  { Z } ) )
1816, 17jca 554 . . . . . . 7  |-  ( ( ( Z  e.  _V  /\ 
ph )  /\  (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) )  ->  (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) ) )
1918ex 450 . . . . . 6  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  B  /\  X  e.  ( _V  \  { Z } ) )  ->  ( n  e.  A  /\  X  e.  ( _V  \  { Z } ) ) ) )
204, 19impbid 202 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  /\  X  e.  ( _V  \  { Z } ) )  <->  ( n  e.  B  /\  X  e.  ( _V  \  { Z } ) ) ) )
2120rabbidva2 3186 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  { n  e.  A  |  X  e.  ( _V  \  { Z } ) }  =  { n  e.  B  |  X  e.  ( _V  \  { Z }
) } )
22 eqid 2622 . . . . 5  |-  ( n  e.  A  |->  X )  =  ( n  e.  A  |->  X )
23 extmptsuppeq.b . . . . . . 7  |-  ( ph  ->  B  e.  W )
2423, 1ssexd 4805 . . . . . 6  |-  ( ph  ->  A  e.  _V )
2524adantl 482 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  A  e.  _V )
26 simpl 473 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  Z  e.  _V )
2722, 25, 26mptsuppdifd 7317 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  |->  X ) supp  Z )  =  { n  e.  A  |  X  e.  ( _V  \  { Z }
) } )
28 eqid 2622 . . . . 5  |-  ( n  e.  B  |->  X )  =  ( n  e.  B  |->  X )
2923adantl 482 . . . . 5  |-  ( ( Z  e.  _V  /\  ph )  ->  B  e.  W )
3028, 29, 26mptsuppdifd 7317 . . . 4  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  B  |->  X ) supp  Z )  =  { n  e.  B  |  X  e.  ( _V  \  { Z }
) } )
3121, 27, 303eqtr4d 2666 . . 3  |-  ( ( Z  e.  _V  /\  ph )  ->  ( (
n  e.  A  |->  X ) supp  Z )  =  ( ( n  e.  B  |->  X ) supp  Z
) )
3231ex 450 . 2  |-  ( Z  e.  _V  ->  ( ph  ->  ( ( n  e.  A  |->  X ) supp 
Z )  =  ( ( n  e.  B  |->  X ) supp  Z ) ) )
33 simpr 477 . . . . . 6  |-  ( ( ( n  e.  A  |->  X )  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3433con3i 150 . . . . 5  |-  ( -.  Z  e.  _V  ->  -.  ( ( n  e.  A  |->  X )  e. 
_V  /\  Z  e.  _V ) )
35 supp0prc 7298 . . . . 5  |-  ( -.  ( ( n  e.  A  |->  X )  e. 
_V  /\  Z  e.  _V )  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  (/) )
3634, 35syl 17 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  (/) )
37 simpr 477 . . . . . 6  |-  ( ( ( n  e.  B  |->  X )  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3837con3i 150 . . . . 5  |-  ( -.  Z  e.  _V  ->  -.  ( ( n  e.  B  |->  X )  e. 
_V  /\  Z  e.  _V ) )
39 supp0prc 7298 . . . . 5  |-  ( -.  ( ( n  e.  B  |->  X )  e. 
_V  /\  Z  e.  _V )  ->  ( ( n  e.  B  |->  X ) supp  Z )  =  (/) )
4038, 39syl 17 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  B  |->  X ) supp  Z )  =  (/) )
4136, 40eqtr4d 2659 . . 3  |-  ( -.  Z  e.  _V  ->  ( ( n  e.  A  |->  X ) supp  Z )  =  ( ( n  e.  B  |->  X ) supp 
Z ) )
4241a1d 25 . 2  |-  ( -.  Z  e.  _V  ->  (
ph  ->  ( ( n  e.  A  |->  X ) supp 
Z )  =  ( ( n  e.  B  |->  X ) supp  Z ) ) )
4332, 42pm2.61i 176 1  |-  ( ph  ->  ( ( n  e.  A  |->  X ) supp  Z
)  =  ( ( n  e.  B  |->  X ) supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  cantnfrescl  8573  cantnfres  8574
  Copyright terms: Public domain W3C validator