MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Structured version   Visualization version   Unicode version

Theorem mrcuni 16281
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcuni  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  =  ( F `  U. ( F " U ) ) )

Proof of Theorem mrcuni
Dummy variables  x  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  C  e.  (Moore `  X
) )
2 simpll 790 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  C  e.  (Moore `  X ) )
3 ssel2 3598 . . . . . . . . 9  |-  ( ( U  C_  ~P X  /\  s  e.  U
)  ->  s  e.  ~P X )
43elpwid 4170 . . . . . . . 8  |-  ( ( U  C_  ~P X  /\  s  e.  U
)  ->  s  C_  X )
54adantll 750 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  X )
6 mrcfval.f . . . . . . . 8  |-  F  =  (mrCls `  C )
76mrcssid 16277 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  s  C_  X )  ->  s  C_  ( F `  s
) )
82, 5, 7syl2anc 693 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  ( F `  s ) )
96mrcf 16269 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
10 ffun 6048 . . . . . . . . . . 11  |-  ( F : ~P X --> C  ->  Fun  F )
119, 10syl 17 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  Fun  F )
1211adantr 481 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  Fun  F )
13 fdm 6051 . . . . . . . . . . . 12  |-  ( F : ~P X --> C  ->  dom  F  =  ~P X
)
149, 13syl 17 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  dom  F  =  ~P X )
1514sseq2d 3633 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  ( U  C_ 
dom  F  <->  U  C_  ~P X
) )
1615biimpar 502 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U  C_  dom  F )
17 funfvima2 6493 . . . . . . . . 9  |-  ( ( Fun  F  /\  U  C_ 
dom  F )  -> 
( s  e.  U  ->  ( F `  s
)  e.  ( F
" U ) ) )
1812, 16, 17syl2anc 693 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( s  e.  U  ->  ( F `  s
)  e.  ( F
" U ) ) )
1918imp 445 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  ( F `  s
)  e.  ( F
" U ) )
20 elssuni 4467 . . . . . . 7  |-  ( ( F `  s )  e.  ( F " U )  ->  ( F `  s )  C_ 
U. ( F " U ) )
2119, 20syl 17 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  ( F `  s
)  C_  U. ( F " U ) )
228, 21sstrd 3613 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  U. ( F " U ) )
2322ralrimiva 2966 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  U  s  C_  U. ( F
" U ) )
24 unissb 4469 . . . 4  |-  ( U. U  C_  U. ( F
" U )  <->  A. s  e.  U  s  C_  U. ( F " U
) )
2523, 24sylibr 224 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. U  C_  U. ( F " U ) )
266mrcssv 16274 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  ( F `  x )  C_  X
)
2726adantr 481 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  x
)  C_  X )
2827ralrimivw 2967 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. x  e.  U  ( F `  x ) 
C_  X )
29 ffn 6045 . . . . . . 7  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
309, 29syl 17 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  F  Fn  ~P X )
31 sseq1 3626 . . . . . . 7  |-  ( s  =  ( F `  x )  ->  (
s  C_  X  <->  ( F `  x )  C_  X
) )
3231ralima 6498 . . . . . 6  |-  ( ( F  Fn  ~P X  /\  U  C_  ~P X
)  ->  ( A. s  e.  ( F " U ) s  C_  X 
<-> 
A. x  e.  U  ( F `  x ) 
C_  X ) )
3330, 32sylan 488 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( A. s  e.  ( F " U
) s  C_  X  <->  A. x  e.  U  ( F `  x ) 
C_  X ) )
3428, 33mpbird 247 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  ( F " U ) s 
C_  X )
35 unissb 4469 . . . 4  |-  ( U. ( F " U ) 
C_  X  <->  A. s  e.  ( F " U
) s  C_  X
)
3634, 35sylibr 224 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. ( F " U
)  C_  X )
376mrcss 16276 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  U. ( F
" U )  /\  U. ( F " U
)  C_  X )  ->  ( F `  U. U )  C_  ( F `  U. ( F
" U ) ) )
381, 25, 36, 37syl3anc 1326 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  C_  ( F `  U. ( F
" U ) ) )
39 simpll 790 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  C  e.  (Moore `  X ) )
40 elssuni 4467 . . . . . . . . 9  |-  ( x  e.  U  ->  x  C_ 
U. U )
4140adantl 482 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  x  C_  U. U )
42 sspwuni 4611 . . . . . . . . . . 11  |-  ( U 
C_  ~P X  <->  U. U  C_  X )
4342biimpi 206 . . . . . . . . . 10  |-  ( U 
C_  ~P X  ->  U. U  C_  X )
4443adantl 482 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. U  C_  X )
4544adantr 481 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  U. U  C_  X
)
466mrcss 16276 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_ 
U. U  /\  U. U  C_  X )  -> 
( F `  x
)  C_  ( F `  U. U ) )
4739, 41, 45, 46syl3anc 1326 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  ( F `  x
)  C_  ( F `  U. U ) )
4847ralrimiva 2966 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) )
49 sseq1 3626 . . . . . . . 8  |-  ( s  =  ( F `  x )  ->  (
s  C_  ( F `  U. U )  <->  ( F `  x )  C_  ( F `  U. U ) ) )
5049ralima 6498 . . . . . . 7  |-  ( ( F  Fn  ~P X  /\  U  C_  ~P X
)  ->  ( A. s  e.  ( F " U ) s  C_  ( F `  U. U
)  <->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) ) )
5130, 50sylan 488 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( A. s  e.  ( F " U
) s  C_  ( F `  U. U )  <->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) ) )
5248, 51mpbird 247 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  ( F " U ) s 
C_  ( F `  U. U ) )
53 unissb 4469 . . . . 5  |-  ( U. ( F " U ) 
C_  ( F `  U. U )  <->  A. s  e.  ( F " U
) s  C_  ( F `  U. U ) )
5452, 53sylibr 224 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. ( F " U
)  C_  ( F `  U. U ) )
556mrcssv 16274 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( F `  U. U )  C_  X )
5655adantr 481 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  C_  X
)
576mrcss 16276 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U. ( F " U ) 
C_  ( F `  U. U )  /\  ( F `  U. U ) 
C_  X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  ( F `  U. U ) ) )
581, 54, 56, 57syl3anc 1326 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  ( F `  U. U ) ) )
596mrcidm 16279 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  X )  -> 
( F `  ( F `  U. U ) )  =  ( F `
 U. U ) )
601, 44, 59syl2anc 693 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  ( F `  U. U ) )  =  ( F `
 U. U ) )
6158, 60sseqtrd 3641 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  U. U ) )
6238, 61eqssd 3620 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  =  ( F `  U. ( F " U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247
This theorem is referenced by:  mrcun  16282  isacs4lem  17168
  Copyright terms: Public domain W3C validator